Journal of Autism and Developmental Disorders

, Volume 46, Issue 3, pp 825–839 | Cite as

Pharmacological Modulation of GABA Function in Autism Spectrum Disorders: A Systematic Review of Human Studies

  • Natascia Brondino
  • Laura Fusar-Poli
  • Cristina Panisi
  • Stefano Damiani
  • Francesco Barale
  • Pierluigi Politi
Original Paper


Autism spectrum disorders are an emerging health problem worldwide, but little is known about their pathogenesis. It has been hypothesized that autism may result from an imbalance between excitatory glutamatergic and inhibitory GABAergic pathways. Commonly used medications such as valproate, acamprosate, and arbaclofen may act on the GABAergic system and be a potential treatment for people with ASD. The present systematic review aimed at evaluating the state-of-the-art of clinical trials of GABA modulators in autism. To date there is insufficient evidence to suggest the use of these drugs in autistic subjects, even if data are promising. Of note, short-term use of all the reviewed medications appears to be safe. Future well designed trials are needed to elucidate these preliminary findings.


Autism spectrum disorder GABA Clinical trials Systematic review 


Author contributions

NB conceived of the study, participated in its design and coordination and drafted the manuscript; LF participated in the design and coordination of the study and drafted the manuscript; CP participated in the design of the study and helped to draft the manuscript; SD participated in the design of the study and helped to draft the manuscript; FB participated in the design and coordination of the study and helped to draft the manuscript; PP conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

All authors declared that there is no conflict of interest.


  1. Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9, 341–355.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Abu Shmais, G. A., Al-Ayadhi, L. Y., Al-Dbass, A. M., & El-Ansary, A. K. (2012). Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism. Journal of Neurodevelopmental Disorders, 4(1), 4.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Alabdali, A., Al-Ayadhi, L., & El-Ansary, A. (2014). Association of social and cognitive impairment and biomarkers in autism spectrum disorders. Journal of Neuroinflammation, 8(11), 4.CrossRefGoogle Scholar
  4. Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31, 137–145.CrossRefPubMedGoogle Scholar
  5. Banerjee, A., García-Oscos, F., Roychowdhury, S., Galindo, L. C., Hall, S., Kilgard, M. P., et al. (2013). Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. International Journal of Neuropsychopharmacology, 16, 1309–1810.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bauman, M. L., & Kemper, T. L. (2005). Neuroanatomic observations of the brain in autism: A review and future directions. International Journal of Developmental Neuroscience, 23, 183–187.CrossRefPubMedGoogle Scholar
  7. Berg, A. T., Plioplys, S., & Tuchman, R. (2011). Risk and correlates of autism spectrum disorders in children with epilepsy: A community based study. Journal of Child Neurology, 26, 540–547.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Berry-Kravis, E. M., Hessl, D., Rathmell, B., Zarevics, P., Cherubini, M., Walton-Bowen, K., et al. (2012). Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: A randomized, controlled, phase 2 trial. Science Translational Medicine, 4(152), 152ra127.CrossRefPubMedGoogle Scholar
  9. Blatt, G. J., Fitzgerald, C. M., Guptill, J. T., Booker, A. B., Kemper, T. L., & Bauman, M. L. (2001). Density and distribution of hippocampal neurotransmitter receptors in autism: An autoradiographic study. Journal of Autism and Developmental Disorders, 31, 537–543.CrossRefPubMedGoogle Scholar
  10. Brogden, R. N., & Goa, K. L. (1991). Flumazenil. A reappraisal of its pharmacological properties and therapeutic efficacy as a benzodiazepine. Drugs, 42, 1061–1089.CrossRefPubMedGoogle Scholar
  11. Bu, D. F., Erlander, M. G., Hitz, B. C., Tillakaratne, N. J., Kaufman, D. L., Wagner-McPherson, C. B., et al. (1992). Two human glutamate decarboxylase, 65 kDa GAD and 67 kDa GAD, are each encoded by a single gene. Proceedings of the National Academy of Sciences of the United States of America, 89, 2115–2119.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Buxbaum, J. D., Silverman, J. M., Smith, C. J., Greenberg, D. A., Kilifarski, M., Reichert, J., et al. (2002). Association between a GABRB3 polymorphism and autism. Molecular Psychiatry, 7, 311–316.CrossRefPubMedGoogle Scholar
  13. Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., et al. (2006). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112(3), 287–303.CrossRefPubMedGoogle Scholar
  14. CDC. (2014). Prevalence of autism spectrum disorders among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR, 63(SS02), 1–21.Google Scholar
  15. Cellot, G., & Cherubini, E. (2014). GABAergic signaling as therapeutic target for autism spectrum disorders. Frontiers in Pediatrics, 8(2), 70.Google Scholar
  16. Chakrabarti, S., & Fombonne, E. (2005). Pervasive developmental disorders in preschool children: Confirmation of high prevalence. American Journal of Psychiatry, 162, 1133–1141.CrossRefPubMedGoogle Scholar
  17. Cheh, M. A., Millonig, J. H., Roselli, L. M., Ming, X., Jacobsen, E., Kamdar, S., et al. (2006). En2 knockout mice display neurobehavioral and neurochemical alterations relevant to autism spectrum disorder. Brain Research, 1116, 166–176.CrossRefPubMedGoogle Scholar
  18. Chez, M. G., Buchanan, C. P., Aimonovitch, M. C., Becker, M., Schaefer, K., Black, C., et al. (2002). Double-blind, placebo-controlled study of L-carnosine supplementation in children with autistic spectrum disorders. Journal of Child Neurology, 17, 833–837.CrossRefPubMedGoogle Scholar
  19. Coghlan, S., Horder, J., Inkster, B., Mendez, M. A., Murphy, D. G., & Nutt, D. J. (2012). GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neuroscience and Biobehavioral Reviews, 36(9), 2044–2055.PubMedCentralCrossRefPubMedGoogle Scholar
  20. DeLorey, T. M., Sahbaie, P., Hashemi, E., Homanics, G. E., & Clark, J. D. (2008). Gabrb3 gene deficient mice exhibit impaired social and exploratory behaviors, deficits in non-selective attention and hypoplasia of cerebellar vermal lobules: A potential model of autism spectrum disorder. Behavioural Brain Research, 187, 207–220.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Dhossche, D., Applegate, H., Abraham, A., Maertens, P., Bland, L., Bencsath, A., et al. (2002). Elevated plasma gammaaminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Medical Science Monitor, 8, R1–R6.Google Scholar
  22. Eftekhari, S., Mehvari Habibabadi, J., Najafi Ziarani, M., Hashemi Fesharaki, S. S., Gharakhani, M., Mostafavi, H., et al. (2013). Bumetanide reduces seizure frequency in patients with temporal lobe epilepsy. Epilepsia, 54(1), e9–e12.CrossRefPubMedGoogle Scholar
  23. El-Ansary, A., & Al-Ayadhi, L. (2014). GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation, 11(1), 189.PubMedCentralCrossRefPubMedGoogle Scholar
  24. El-Ansary, A. K., Bacha, A. B., & Ayahdi, L. Y. (2011). Relationship between chronic lead toxicity and plasma neurotransmitters in autistic patients from Saudi Arabia. Clinical Biochemistry, 44(13), 1116–1120.CrossRefPubMedGoogle Scholar
  25. Erickson, C. A., Early, M., Stigler, K. A., Wink, L. K., Mullett, J. E., & McDougle, C. J. (2011). An open-label naturalistic pilot study of acamprosate in youth with autistic disorder. Journal of Child and Adolescent Psychopharmacology, 21, 565–569.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Erickson, C. A., Mullett, J. E., & McDougle, C. J. (2010). Brief report: Acamprosate in fragile X syndrome. Journal of Autism and Developmental Disorders, 40, 1412–1416.CrossRefPubMedGoogle Scholar
  27. Erickson, C. A., Veenstra-Vanderweele, J. M., Melmed, R. D., McCracken, J. T., Ginsberg, L. D., Sikich, L., et al. (2014a). STX209 (Arbaclofen) for autism spectrum disorders: An 8-week open-label study. Journal of Autism and Developmental Disorders, 44(4), 958–964.CrossRefPubMedGoogle Scholar
  28. Erickson, C. A., Wink, L. K., Early, M. C., Stiegelmeyer, E., Mathieu-Frasier, L., Patrick, V., et al. (2014b). Brief report: Pilot single-blind placebo lead-in study of acamprosate in youth with autistic disorder. Journal of Autism and Developmental Disorders, 44, 981–987.CrossRefPubMedGoogle Scholar
  29. Erickson, C. A., Wink, L. K., Ray, B., Early, M. C., Stiegelmeyer, E., Mathieu-Frasier, L., et al. (2013). Impact of acamprosate on behavior and brain-derived neurotrophic factor: An open-label study in youth with fragile X syndrome. Psychopharmacology (Berlin), 228, 75–84.CrossRefGoogle Scholar
  30. Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Thuras, P. D. (2009a). Expression of GABAB receptors is altered in brains of subjects with autism. Cerebellum, 8, 64–69.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Fatemi, S. H., Halt, A. R., Stary, J. M., Kanodia, R., Schulz, S. C., & Realmuto, G. R. (2002). Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in parietal and cerebellar cortices of autistic subjects. Biological Psychiatry, 52, 805–810.CrossRefPubMedGoogle Scholar
  32. Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Rooney, R. J., Patel, D. H., & Thuras, P. D. (2010). mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. Journal of Autism and Developmental Disorders, 40, 743–750.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Rustan, O. G., Rooney, R. J., & Thuras, P. D. (2014). Downregulation of GABAA receptor protein subunits α6, β2, δ, ε, γ2, θ, and ρ2 in the superior frontal cortex of subjects with autism. Journal of Autism and Developmental Disorders, 44(8), 1833–1845.CrossRefPubMedGoogle Scholar
  34. Fatemi, S. H., Reutiman, T. J., Folsom, T. D., & Thuras, P. D. (2009b). GABA (A) receptor down regulation in brains of subjects with autism. Journal of Autism and Developmental Disorders, 39, 223–230.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Földy, C., Malenka, R. C., & Südhof, T. C. (2013). Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron, 78, 498–509.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Fombonne, E., Zakarian, R., Bennett, A., Meng, L., & McLean-Heywood, D. (2006). Pervasive developmental disorders in Montreal, Quebec, Canada: Prevalence and links with immunizations. Pediatrics, 118, e139–e150.CrossRefPubMedGoogle Scholar
  37. Frizzo, M. E., Dall’Onder, L. P., Dalcin, K. B., & Souza, D. O. (2004). Riluzole enhances glutamate uptake in rat astrocyte cultures. Cellular and Molecular Neurobiology, 24(1), 123–128.CrossRefPubMedGoogle Scholar
  38. Ghaleiha, A., Mohammadi, E., Mohammadi, M. R., Farokhnia, M., Modabbernia, A., Yekehtaz, H., et al. (2013). Riluzole as an adjunctive therapy to risperidone for the treatment of irritability in children with autistic disorder: A double-blind, placebo-controlled, randomized trial. Paediatric Drugs, 15(6), 505–514.CrossRefPubMedGoogle Scholar
  39. Guptill, J. T., Booker, A. B., Gibbs, T. T., Kemper, T. L., Bauman, M. L., & Blatt, G. J. (2007). [3H]-flunitrazepam-labeled benzodiazepine binding sites in the hippocampal formation in autism: A multiple concentration autoradiographic study. Journal of Autism and Developmental Disorders, 37, 911–920.CrossRefPubMedGoogle Scholar
  40. Hadjikhani, N., Zürcher, N. R., Rogier, O., Ruest, T., Hippolyte, L., Ben-Ari, Y., et al. (2015). Improving emotional face perception in autism with diuretic bumetanide: A proof-of-concept behavioral and functional brain imaging pilot study. Autism, 19(2), 149–157.CrossRefPubMedGoogle Scholar
  41. Harada, M., Taki, M. M., Nose, A., Kubo, H., Mori, K., Nishitani, H., et al. (2011). Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 Tesla instrument. Journal of Autism and Developmental Disorders, 41, 447–454.CrossRefPubMedGoogle Scholar
  42. He, Y., Benz, A., Fu, T., Wang, M., Covey, D. F., Zorumski, C. F., et al. (2002). Neuroprotective agent riluzole potentiates postsynaptic GABA(A) receptor function. Neuropharmacology, 42(2), 199–209.CrossRefPubMedGoogle Scholar
  43. Hellings, J. A., Weckbaugh, M., Nickel, E. J., Cain, S. E., Zarcone, J. R., Reese, R. M., et al. (2005). A double-blind, placebo-controlled study of valproate for aggression in youth with pervasive developmental disorders. J Child Adolesc Psychopharmacol, 15(4), 682–692.CrossRefPubMedGoogle Scholar
  44. Henderson, C., Wijetunge, L., Kinoshita, M. N., Shumway, M., Hammond, R. S., Postma, F. R., et al. (2012). Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Science Translational Medicine, 4(152), 152ra128.CrossRefPubMedGoogle Scholar
  45. Higgins, J. P. T., & Green, S. (Eds.). (2011). Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration.Google Scholar
  46. Hogart, A., Nagarajan, R. P., Patzel, K. A., Yasui, D. H., & Lasalle, J. M. (2007). 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Human Molecular Genetics, 16, 691–703.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Hollander, E., Chaplin, W., Soorya, L., Wasserman, S., Novotny, S., Rusoff, J., et al. (2010). Divalproex sodium vs placebo for the treatment of irritability in children and adolescents with autism spectrum disorders. Neuropsychopharmacology, 35, 990–998.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Hollander, E., Soorya, L., Wasserman, S., Esposito, K., Chaplin, W., & Anagnostou, E. (2006). Divalproex sodium vs. placebo in the treatment of repetitive behaviours in autism spectrum disorder. International Journal of Neuropsychopharmacology, 9, 209–213.CrossRefPubMedGoogle Scholar
  49. Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. Journal of Autism and Developmental Disorders, 31, 247–248.CrossRefPubMedGoogle Scholar
  50. Kalk, N. J., & Lingford-Hughes, A. R. (2014). The clinical pharmacology of acamprosate. British Journal of Clinical Pharmacology, 77(2), 315–323.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Kaupmann, K., Schuler, V., Mosbacher, J., Bischoff, S., Bittiger, H., Heid, J., et al. (1998). Human γ-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 95, 14991–14996.PubMedCentralCrossRefPubMedGoogle Scholar
  52. Kim, H. L., Donnelly, J. H., Tournay, A. E., Book, T. M., & Filipek, P. (2006a). Absence of seizures despite high prevalence of epileptiform EEG abnormalities in children with autism monitored in a tertiary care center. Epilepsia, 47(2), 394–398.CrossRefPubMedGoogle Scholar
  53. Kim, S. A., Kim, J. H., Park, M., Cho, I. H., & Yoo, H. J. (2006b). Association of GABRB3 polymorphisms with autism spectrum disorders in Korean trios. Neuropsychobiology, 54, 160–165.CrossRefPubMedGoogle Scholar
  54. Kuriyama, K., Hirouchi, M., & Kimura, H. (2000). Neurochemical and molecular pharmacological aspects of the GABA(B) receptor. Neurochemical Research, 25, 1233–1239.CrossRefPubMedGoogle Scholar
  55. Lal, R., Sukbuntherng, J., Tai, E. H., Upadhyay, S., Yao, F., Warren, M. S., et al. (2009). Arbaclofen placarbil, a novel R-baclofen prodrug: improved absorption, distribution, metabolism, and elimination properties compared with R-baclofen. Journal of Pharmacology and Experimental Therapeutics, 330(3), 911–921.CrossRefPubMedGoogle Scholar
  56. Lawrence, Y. A., Kemper, T. L., Bauman, M. L., & Blatt, G. J. (2010). Parvalbumin-, calbindin-, and calretinin-immunoreactive hippocampal interneuron density in autism. Acta Neurologica Scandinavica, 121, 99–108.CrossRefPubMedGoogle Scholar
  57. Lemonnier, E., & Ben-Ari, Y. (2010). The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects. Acta Paediatrica, 99, 1885–1888.CrossRefPubMedGoogle Scholar
  58. Lemonnier, E., Degrez, C., Phelep, M., Tyzio, R., Josse, F., Grandgeorge, M., et al. (2012). A randomised controlled trial of bumetanide in the treatment of autism in children. Translational Psychiatry, 2, e202.PubMedCentralCrossRefPubMedGoogle Scholar
  59. Levy, S. E., Mandell, D. S., & Schultz, R. T. (2009). Autism. The Lancet, 374, 1627–1638.CrossRefGoogle Scholar
  60. Löscher, W. (1981). Effect of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions. Journal of Neurochemistry Research, 36, 1521–1527.CrossRefGoogle Scholar
  61. Löscher, W. (2002). Basic pharmacology of valproate: A review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs, 16(10), 669–694.CrossRefPubMedGoogle Scholar
  62. Ma, D. Q., Whitehead, P. L., Menold, M. M., Martin, E. R., Ashley-Koch, A. E., Mei, H., et al. (2005). Identification of significant association and gene–gene interaction of GABA receptor subunit genes in autism. American Journal of Human Genetics, 77, 377–388.PubMedCentralCrossRefPubMedGoogle Scholar
  63. Martin, D., Thompson, M. A., & Nadler, J. V. (1993). The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA1. European Journal of Pharmacology, 250(3), 473–476.CrossRefPubMedGoogle Scholar
  64. Mendez, M. A., Horder, J., Myers, J., Coghlan, S., Stokes, P., Erritzoe, D., et al. (2013). The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study. Neuropharmacology, 68, 195–201.PubMedCentralCrossRefPubMedGoogle Scholar
  65. Mori, T., Mori, K., Fujii, E., Toda, Y., Miyazaki, M., Harada, M., et al. (2012). Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Development, 34, 648–654.CrossRefPubMedGoogle Scholar
  66. Mott, D. D., & Lewis, D. V. (1994). The pharmacology and function of central GABAB receptors. International Review of Neurobiology, 36, 97–223.CrossRefPubMedGoogle Scholar
  67. Nutt, D. J., & Malizia, A. L. (2001). New insights into the role of the GABA(A)-benzodiazepine receptor in psychiatric disorder. British Journal of Psychiatry, 179, 390–396.CrossRefPubMedGoogle Scholar
  68. Oblak, A., Gibbs, T. T., & Blatt, G. J. (2009). Decreased GABAA receptors and benzodiazepine binding sites in the anterior cingulate cortex in autism. Autism Research, 2, 205–219.PubMedCentralCrossRefPubMedGoogle Scholar
  69. Pizzarelli, R., & Cherubini, E. (2013). Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice: an animal model of autism. Frontiers in Cellular Neuroscience, 4(7), 85.Google Scholar
  70. Rimvall, K., & Martin, D. L. (1994). The level of GAD67 protein is highly sensitive to small increases in intraneuronal γ-aminobutyric acid levels. Journal of Neurochemistry, 62, 1375–1381.CrossRefPubMedGoogle Scholar
  71. Ritvo, E. R., Freeman, B. J., Scheibel, A. B., Duong, T., Robinson, H., Guthrie, D., et al. (1986). Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLANSAC autopsy research report. American Journal of Psychiatry, 146, 862–866.Google Scholar
  72. Rojas, D. C., Singel, D., Steinmetzm, S., Hepburn, S., & Brown, M. S. (2014). Decreased left perisylvian GABA concentration in children with autism and unaffected siblings. Neuroimage, 86, 28–34.PubMedCentralCrossRefPubMedGoogle Scholar
  73. Rolf, L. H., Haarmann, F. Y., Grotemeyer, K. H., & Kehrer, H. (1993). Serotonin and amino acid content in platelets of autistic children. Acta Psychiatrica Scandinavica, 87, 312–316.CrossRefPubMedGoogle Scholar
  74. Russo, A. J. (2013). Correlation between hepatocyte growth factor (HGF) and gamma-aminobutyric acid (GABA) plasma levels in autistic children. Biomark Insights, 12(8), 69–75.CrossRefGoogle Scholar
  75. Sawaya, M. C. B., Horton, R. W., & Meldrun, B. S. (1975). Effects of anticonvulsant drugs on the cerebral enzymes metabolizing GABA. Epilepsia, 16, 649–655.CrossRefPubMedGoogle Scholar
  76. Sgadò, P., Genovesi, S., Kalinovsky, A., Zunino, G., Macchi, F., Allegra, M., et al. (2013). Loss of GABAergic neurons in the hippocampus and cerebral cortex of engrailed-2 null mutant mice: Implications for autism spectrum disorders. Experimental Neurology, 247, 496–505.PubMedCentralCrossRefPubMedGoogle Scholar
  77. Sieghart, W., & Sperk, G. (2002). Subunit composition, distribution and function of GABA(A) receptor subtypes. Current Topics in Medicinal Chemistry, 2, 795–816.CrossRefPubMedGoogle Scholar
  78. Stell, B. M., Brickley, S. G., Tang, C. Y., Farrant, M., & Mody, I. (2003). Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America, 100(24), 14439–14444.PubMedCentralCrossRefPubMedGoogle Scholar
  79. Tabuchi, K., Blundell, J., Etherton, M. R., Hammer, R. E., Liu, X., Powell, C. M., et al. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science, 318, 71–76.PubMedCentralCrossRefPubMedGoogle Scholar
  80. Trombley, P. Q., Horning, M. S., & Blakemore, L. J. (1998). Carnosine modulates zinc and copper effects on amino acid receptors and synaptic transmission. NeuroReport, 9(15), 3503–3507.CrossRefPubMedGoogle Scholar
  81. Tuchman, R., & Rapin, I. (2002). Epilepsy in autism. Lancet Neurology, 1(6), 352–358.CrossRefPubMedGoogle Scholar
  82. van Kooten, I. A., Palmen, S. J., von Cappeln, P., Steinbusch, H. W., Korr, H., Heinsen, H., et al. (2008). Neurons in the fusiform gyrus are fewer and smaller in autism. Brain, 131, 987–999.CrossRefPubMedGoogle Scholar
  83. Veenstra-VanderWeele, J., Sikich, L., Melmed, R., von Hehn, J. S., Walton-Bowen, K. L., & Kuriyama, N. et al. (2013). Randomized, controlled, phase 2 trial of STX209 for social function in ASD. Abstract presented at the IMFAR meeting 2013.Google Scholar
  84. Weiss, M., Tikhonov, D., & Buldakova, S. (2002). Effect of flumazenil on GABAA receptors in isolated rat hippocampal neurons. Neurochemical Research, 7(12), 1605–1612.CrossRefGoogle Scholar
  85. Wolpert, C. M., Menold, M. M., Bass, M. P., Qumsiyeh, M. B., Donnelly, S. L., Ravan, S. A., et al. (2000). Three probands with autistic disorder and isodicentric chromosome 15. American Journal of Medical Genetics, 96, 365–372.CrossRefPubMedGoogle Scholar
  86. Wray, J. A., Yoon, J. H., Vollmer, T., & Mauk, J. (2000). Pilot study of the behavioral effects of flumazenil in two children with autism. Journal of Autism and Developmental Disorders, 30, 619–620.CrossRefPubMedGoogle Scholar
  87. Yip, J., Soghomonian, J. J., & Blatt, G. J. (2007). Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: Pathophysiological implications. Acta Neuropathologica, 113, 559–568.CrossRefPubMedGoogle Scholar
  88. Yip, J., Soghomonian, J. J., & Blatt, G. J. (2009). Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: An in situ hybridization study. Autism Research, 2, 50–59.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Natascia Brondino
    • 1
  • Laura Fusar-Poli
    • 1
  • Cristina Panisi
    • 1
  • Stefano Damiani
    • 1
  • Francesco Barale
    • 1
  • Pierluigi Politi
    • 1
  1. 1.Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly

Personalised recommendations