Journal of Autism and Developmental Disorders

, Volume 46, Issue 2, pp 502–513 | Cite as

Low Fidelity Imitation of Atypical Biological Kinematics in Autism Spectrum Disorders Is Modulated by Self-Generated Selective Attention

  • Spencer J. HayesEmail author
  • Matthew Andrew
  • Digby Elliott
  • Emma Gowen
  • Simon J. Bennett
Original Paper


We examined whether adults with autism had difficulty imitating atypical biological kinematics. To reduce the impact that higher-order processes have on imitation we used a non-human agent model to control social attention, and removed end-state target goals in half of the trials to minimise goal-directed attention. Findings showed that only neurotypical adults imitated atypical biological kinematics. Adults with autism did, however, become significantly more accurate at imitating movement time. This confirmed they engaged in the task, and that sensorimotor adaptation was self-regulated. The attentional bias to movement time suggests the attenuation in imitating kinematics might be a compensatory strategy due to deficits in lower-level visuomotor processes associated with self-other mapping, or selective attention modulated the processes that represent biological kinematics.


Autism spectrum disorders Imitation Biological motion kinematics Attention 



The authors would like to thank Robin Bush, Beverly Breen, and Hema Chandrashekhar for their help in supporting the study.

Author Contribution

SH conceived of the study, participated in its design and coordination, performed the measurement and statistical analysis, and drafted the manuscript; MA conceived of the study, participated in its design and coordination, performed the statistical analysis and measurement, and helped to draft the manuscript; DE conceived of the study, helped with the statistical analysis and drafting the manuscript; EG participated in the design of the study, and helped to draft the manuscript; SB conceived of the study, participated in its design and coordination, performed the statistical analysis, and drafted the manuscript. All authors read and approved the final manuscript.


  1. Bandura, A. (1977). Social learning theory. Prentice-Hall, NJ: Englewood Cliffs.Google Scholar
  2. Baron-Cohen, S., Ring, H. A., Wheelwright, S., Bullmore, E. T., Brammer, M. J., Simmons, A., & Williams, S. C. R. (1999). Social intelligence in the normal and autistic brain: An fMRI study. European Journal of Neuroscience, 11(6), 1891–1898. doi: 10.1046/j.1460-9568.1999.00621.x.CrossRefPubMedGoogle Scholar
  3. Bekkering, H., Wohlschlaeger, A., & Gattis, M. (2000). Imitation of gestures in children is goal-directed. The Quarterly Journal of Experimental Psychology, 53(1), 153–164. doi: 10.1080/713755872.CrossRefPubMedGoogle Scholar
  4. Bernier, R., Dawson, G., Webb, S., & Murias, M. (2007). EEG mu rhythm and imitation impairments in individuals with autism spectrum disorder. Brain and Cognition, 64(3), 228–237. doi: 10.1016/j.bandc.2007.03.004.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bird, G., Catmur, C., Silani, G., Frith, C., & Frith, U. (2006). Attention does not modulate neural responses to social stimuli in autism spectrum disorders. Neuroimage, 31(4), 1614–1624. doi: 10.1016/j.neuroimage.2006.02.037.CrossRefPubMedGoogle Scholar
  6. Bird, G., & Heyes, C. (2005). Effector-dependent learning by observation of a finger movement sequence. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 262–275.PubMedGoogle Scholar
  7. Bird, G., Leighton, J., Press, C., & Heyes, C. (2007). Intact automatic imitation of human and robot actions in autism spectrum disorders. Proceedings Biological Sciences/The Royal Society, 274(1628), 3027–3031. doi: 10.1098/rspb.2007.1019.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Boucher, J., & Lewis, V. (1992). Unfamiliar face recognition in relatively able autistic children. Journal of Child Psychology and Psychiatry, 33(5), 843–859. doi: 10.1111/j.1469-7610.1992.tb01960.x.CrossRefPubMedGoogle Scholar
  9. Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106(1–2), 3–22.CrossRefPubMedGoogle Scholar
  10. Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J., & Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron, 42(2), 323–334. doi: 10.1016/S0896-6273(04)00181-3.CrossRefPubMedGoogle Scholar
  11. Byrne, R. W., & Russon, A. E. (1998). Learning by imitation: A hierarchical approach. Behavioral and Brain Sciences, 21(5), 667–684.PubMedGoogle Scholar
  12. Carroll, W. R., & Bandura, A. (1982). The role of visual monitoring in observational learning of action patterns: Making the unobservable observable. Journal of Motor Behavior, 14(2), 153–167.CrossRefPubMedGoogle Scholar
  13. Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893–910.CrossRefPubMedGoogle Scholar
  14. Cook, J. L., & Bird, G. (2012). Atypical social modulation of imitation in autism spectrum conditions. Journal of Autism and Developmental Disorders, 42(6), 1045–1051.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., et al. (2006). Understanding emotions in others: Mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30. doi: 10.1038/nn1611
  16. Di Dio, C., Di Cesare, G., Higuchi, S., Roberts, N., Vogt, S., & Rizzolatti, G. (2013). The neural correlates of velocity processing during the observation of a biological effector in the parietal and premotor cortex. Neuroimage, 64, 425–436. doi: 10.1016/j.neuroimage.2012.09.026.CrossRefPubMedGoogle Scholar
  17. Dinstein, I., Thomas, C., Humphreys, K., Minshew, N., Behrmann, M., & Heeger, D. J. (2010). Normal Movement Selectivity in Autism. Neuron, 66(3), 461–469. doi: 10.1016/j.neuron.2010.03.034.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Edwards, L. A. (2014). A meta-analysis of imitation abilities in individuals with autism spectrum disorders. Autism Research, 7(3), 363–380. doi: 10.1002/aur.1379.CrossRefPubMedGoogle Scholar
  19. Elliott, D., Hansen, S., Grierson, L. E. M., Lyons, J., Bennett, S. J., & Hayes, S. J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023–1044. doi: 10.1037/a0020958.CrossRefPubMedGoogle Scholar
  20. Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimentally confirmed mathematical model. The Journal of Neuroscience, 5(7), 1688–1703.PubMedGoogle Scholar
  21. Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2001). Phase-specific modulation of cortical motor output during movement observation. NeuroReport, 12(7), 1489–1492.CrossRefPubMedGoogle Scholar
  22. Gidley Larson, J. C., Bastian, A. J., Donchin, O., Shadmehr, R., & Mostofsky, S. H. (2008). Acquisition of internal models of motor tasks in children with autism. Brain, 131(11), 2894–2903. doi: 10.1093/brain/awn226.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Grèzes, J., Wicker, B., Berthoz, S., & de Gelder, B. (2009). A failure to grasp the affective meaning of actions in autism spectrum disorder subjects. Neuropsychologia, 47(8–9), 1816–1825. doi: 10.1016/j.neuropsychologia.2009.02.021.CrossRefPubMedGoogle Scholar
  24. Grossman, E. D., Battelli, L., & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perception of biological motion. Vision Research, 45(22), 2847–2853. doi: 10.1016/j.visres.2005.05.027.CrossRefPubMedGoogle Scholar
  25. Grossman, E. D., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12(5), 711–720.CrossRefPubMedGoogle Scholar
  26. Hamilton, A. F. D. C. (2013). Reflecting on the mirror neuron system in autism: A systematic review of current theories. Developmental Cognitive Neuroscience, 3, 91–105.CrossRefPubMedGoogle Scholar
  27. Hamilton, A. F. D. C., Brindley, R. M., & Frith, U. (2007). Imitation and action understanding in autistic spectrum disorders: How valid is the hypothesis of a deficit in the mirror neuron system? Neuropsychologia, 45(8), 1859–1868.CrossRefPubMedGoogle Scholar
  28. Hamilton, A. F. D. C., & Grafton, S. T. (2007). The motor hierarchy: From kinematics to goals and intentions. In P. Haggard, Y. Rosetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition: Attention and performance XXII (pp. 381–408). Oxford, UK: Oxford University Press.Google Scholar
  29. Hayes, S. J., Andrew, M., Elliott, D., Roberts, J. W., & Bennett, S. J. (2012). Dissociable contributions of motor-execution and action-observation to intermanual transfer. Neuroscience Letters, 506(2), 346–350.CrossRefPubMedGoogle Scholar
  30. Hayes, S. J., Ashford, D., & Bennett, S. J. (2008). Goal-directed imitation: The means to an end. Acta Psychologica, 127(2), 407–415.CrossRefPubMedGoogle Scholar
  31. Hayes, S. J., Elliott, D., & Bennett, S. J. (2010). General motor representations are developed during action-observation. Experimental Brain Research, 204, 1–8.CrossRefGoogle Scholar
  32. Hayes, S. J., Elliott, D., & Bennett, S. J. (2013). Visual online control processes are acquired during observational practice. Acta Psychologica, 143(3), 298–302. doi: 10.1016/j.actpsy.2013.04.012.CrossRefPubMedGoogle Scholar
  33. Hayes, S. J., Hodges, N. J., Huys, R., & Williams, A. M. (2007). End-point focus manipulations to determine what information is used during observational learning. Acta Psychologica, 126(2), 120–137.CrossRefPubMedGoogle Scholar
  34. Hayes, S. J., Roberts, J. W., Elliott, D., & Bennett, S. J. (2014). Top-down attentional processes modulate the coding of atypical biological motion kinematics in the absence of motor signals. Journal of Experimental Psychology: Human Perception and Performance, 40(4), 1641–1653.PubMedGoogle Scholar
  35. Hayes, S. J., Timmis, M. A., & Bennett, S. J. (2009). Eye movements are not a prerequisite for learning movement sequence timing through observation. Acta Psychologica, 131(3), 202–208.CrossRefPubMedGoogle Scholar
  36. Heyes, C. (2001). Causes and consequences of imitation. Trends in Cognitive Sciences, 5(6), 253–261.CrossRefPubMedGoogle Scholar
  37. Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463–483. doi: 10.1037/a0022288.CrossRefPubMedGoogle Scholar
  38. Heyes, C., & Bird, G. (2007). Mirroring, association, and the correspondence problem. In P. Haggard, Y. Rossetti, & M. Kawato (Eds.), Sensorimotor foundations of higher cognition: Attention and performance XX (pp. 461–479). Oxford, England: Oxford University Press.Google Scholar
  39. Hobson, R. P., & Lee, A. (1999). Imitation and Identification in Autism. Journal of Child Psychology and Psychiatry, 40(4), 649–659. doi: 10.1111/1469-7610.00481.CrossRefPubMedGoogle Scholar
  40. Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15(6), 632–637. doi: 10.1016/j.conb.2005.10.010.CrossRefPubMedGoogle Scholar
  41. Iacoboni, M., Koski, L. M., Brass, M., Bekkering, H., Woods, R. P., Dubeau, M. C., & Rizzolatti, G. (2001). Reafferent copies of imitated actions in the right superior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13995–13999. doi: 10.1073/pnas.241474598.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526–2528. doi: 10.1126/science.286.5449.2526.CrossRefPubMedGoogle Scholar
  43. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14(2), 201–211. doi: 10.3758/BF03212378.CrossRefGoogle Scholar
  44. Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8(3), 159–166. doi: 10.1007/s10339-007-0170-2.PubMedCentralCrossRefPubMedGoogle Scholar
  45. Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception and Psychophysics, 21(6), 575–580. doi: 10.3758/BF03198740.CrossRefGoogle Scholar
  46. Lakin, J. L., & Chartrand, T. L. (2003). Using nonconscious behavioral mimicry to create affiliation and rapport. Psychological Science, 14(4), 334–339. doi: 10.1111/1467-9280.14481.CrossRefPubMedGoogle Scholar
  47. Liepelt, R., & Brass, M. (2010). Automatic imitation of physically impossible movements. Social Cognition, 28(1), 59–73.CrossRefGoogle Scholar
  48. Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible actions: Effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 489–501. doi: 10.1037/0096-1523.34.2.489.PubMedGoogle Scholar
  49. Lord, C., Risi, S., Lambrecht, L., Cook, E., Jr, Leventhal, B., DiLavore, P., & Rutter, M. (2000). The autism diagnostic observation schedule—Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223. doi: 10.1023/A:1005592401947.CrossRefPubMedGoogle Scholar
  50. Nishitani, N., Avikainen, S., & Hari, R. (2004). Abnormal imitation-related cortical activation sequences in Asperger’s syndrome. Annals of Neurology, 55(4), 558–562. doi: 10.1002/ana.20031.CrossRefPubMedGoogle Scholar
  51. Oberman, L. M., Hubbard, E. M., McCleery, J. P., Altschuler, E. L., Ramachandran, V. S., & Pineda, J. A. (2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders. Cognitive Brain Research, 24(2), 190–198.CrossRefPubMedGoogle Scholar
  52. Perra, O., Williams, J. H. G., Whiten, A., Fraser, L., Benzie, H., & Perrett, D. I. (2008). Imitation and ‘theory of mind’ competencies in discrimination of autism from other neurodevelopmental disorders. Research in Autism Spectrum Disorders, 2(3), 456–468. doi: 10.1016/j.rasd.2007.09.007.CrossRefGoogle Scholar
  53. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.CrossRefGoogle Scholar
  54. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefPubMedGoogle Scholar
  55. Rogers, S. J. (1999). An examination of the imitation deficit in autism. In J. A. B. Nadel (Ed.), Imitation in infancy (pp. 255–283). Cambridge: Cambridge University Press.Google Scholar
  56. Rogers, S. J., Bennetto, L., McEvoy, R., & Pennington, B. F. (1996). Imitation and pantomime in high-functioning adolescents with autism spectrum disorders. Child Development, 67(5), 2060–2073. doi: 10.1111/j.1467-8624.1996.tb01843.x.CrossRefPubMedGoogle Scholar
  57. Rogers, S. J., Hepburn, S. L., Stackhouse, T., & Wehner, E. (2003). Imitation performance in toddlers with autism and those with other developmental disorders. Journal of Child Psychology and Psychiatry, 44(5), 763–781. doi: 10.1111/1469-7610.00162.CrossRefPubMedGoogle Scholar
  58. Rogers, S. J., & Pennington, B. F. (1991). A theoretical approach to the deficits in infantile autism. Development and Psychopathology, 3(02), 137–162. doi: 10.1017/S0954579400000043.CrossRefGoogle Scholar
  59. Rumiati, R. I., Weiss, P. H., Tessari, A., Assmus, A., Zilles, K., Herzog, H., & Fink, G. R. (2005). Common and differential neural mechanisms supporting imitation of meaningful and meaningless actions. Journal of Cognitive Neuroscience, 17(9), 1420–1431.CrossRefPubMedGoogle Scholar
  60. Salowitz, N. G., Eccarius, P., Karst, J., Carson, A., Schohl, K., Stevens, S., & Scheidt, R. (2013). Brief report: Visuo-spatial guidance of movement during gesture imitation and mirror drawing in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(4), 985–995. doi: 10.1007/s10803-012-1631-8.CrossRefPubMedGoogle Scholar
  61. Smith, I. M., & Bryson, S. E. (1994). Imitation and action in autism: A critical review. Psychological Bulletin, 116(2), 259–273.CrossRefPubMedGoogle Scholar
  62. Southgate, V., & Hamilton, A. F. D. C. (2008). Unbroken mirrors: Challenging a theory of Autism. Trends in Cognitive Sciences, 12(6), 225–229. doi: 10.1016/j.tics.2008.03.005.CrossRefPubMedGoogle Scholar
  63. Spengler, S., Bird, G., & Brass, M. (2010). Hyperimitation of actions is related to reduced understanding of others’ minds in autism spectrum conditions. Biological Psychiatry, 68(12), 1148–1155. doi: 10.1016/j.biopsych.2010.09.017.CrossRefPubMedGoogle Scholar
  64. Stewart, H. J., McIntosh, R. D., & Williams, J. H. G. (2013). A specific deficit of imitation in autism spectrum disorder. Autism Research,. doi: 10.1002/aur.1312.Google Scholar
  65. Swettenham, J., Baron-Cohen, S., Charman, T., Cox, A., Baird, G., Drew, A., & Wheelwright, S. (1998). The frequency and distribution of spontaneous attention shifts between social and nonsocial stimuli in autistic, typically developing, and nonautistic developmentally delayed infants. Journal of Child Psychology and Psychiatry and Allied Disciplines, 39(05), 747–753.CrossRefGoogle Scholar
  66. Théoret, H., Halligan, E., Kobayashi, M., Fregni, F., Tager-Flusberg, H., & Pascual-Leone, A. (2005). Impaired motor facilitation during action observation in individuals with autism spectrum disorder. Current Biology, 15(3), R84–R85. doi: 10.1016/j.cub.2005.01.022.CrossRefPubMedGoogle Scholar
  67. Vivanti, G., & Hamilton, A. F. D. C. (2014). Imitation in autism spectrum disorders handbook of autism and pervasive developmental disorders (4th Edn.). New Jersey: Wiley.Google Scholar
  68. Vivanti, G., Nadig, A., Ozonoff, S., & Rogers, S. J. (2008). What do children with autism attend to during imitation tasks? Journal of Experimental Child Psychology, 101(3), 186–205. doi: 10.1016/j.jecp.2008.04.008.CrossRefPubMedGoogle Scholar
  69. Wang, Y., & Hamilton, A. F. D. C. (2012). Social top-down response modulation (STORM): A model of the control of mimicry in social interaction. Frontiers in Human Neuroscience, 6, 1. doi: 10.3389/fnhum.2012.00153.Google Scholar
  70. Wechsler, D. (1999). Wechsler abbreviated scales of intelligence (WASI). San Antonio, TX: Psychological Corporation.Google Scholar
  71. Wild, K. S., Poliakoff, E., Jerrison, A., & Gowen, E. (2010). The influence of goals on movement kinematics during imitation. Experimental Brain Research, 204(3), 353–360. doi: 10.1007/s00221-009-2034-8.CrossRefPubMedGoogle Scholar
  72. Wild, K. S., Poliakoff, E., Jerrison, A., & Gowen, E. (2012). Goal-directed and goal-less imitation in autism spectrum disorder. Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-011-1417-4.PubMedGoogle Scholar
  73. Williams, J. H. G., Casey, J. M., Braadbaart, L., Culmer, P. R., & Mon-Williams, M. (2014). Kinematic measures of imitation fidelity in primary school children. Journal of Cognition and Development, 15(2), 345–362. doi: 10.1080/15248372.2013.771265.CrossRefGoogle Scholar
  74. Williams, J. H. G., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and ‘mirror neuron’ functioning in autistic spectrum disorder. Neuropsychologia, 44(4), 610–621. doi: 10.1016/j.neuropsychologia.2005.06.010.CrossRefPubMedGoogle Scholar
  75. Williams, J. H. G., Whiten, A., & Singh, T. (2004). A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorders, 34(3), 285–299. doi: 10.1023/B:JADD.0000029551.56735.3a.CrossRefPubMedGoogle Scholar
  76. Williams, J. H. G., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25(4), 287–295. doi: 10.1016/S0149-7634(01)00014-8.CrossRefPubMedGoogle Scholar
  77. Wohlschlager, A., Gattis, M., & Bekkering, H. (2003). Action generation and action perception in imitation: An instance of the ideomotor principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431), 501–515. doi: 10.1098/rstb.2002.1257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Spencer J. Hayes
    • 1
    Email author
  • Matthew Andrew
    • 1
  • Digby Elliott
    • 1
    • 2
  • Emma Gowen
    • 3
  • Simon J. Bennett
    • 1
  1. 1.Brain and Behaviour Laboratory, Faculty of Science, Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
  2. 2.Department of KinesiologyMcMaster UniversityHamiltonCanada
  3. 3.Faculty of Life SciencesThe University of ManchesterManchesterUK

Personalised recommendations