Journal of Autism and Developmental Disorders

, Volume 46, Issue 1, pp 113–126 | Cite as

Children with Autism Spectrum Disorders Make a Fruit Salad with Probo, the Social Robot: An Interaction Study

  • Ramona E. Simut
  • Johan Vanderfaeillie
  • Andreea Peca
  • Greet Van de Perre
  • Bram Vanderborght
Original Paper


Social robots are thought to be motivating tools in play tasks with children with autism spectrum disorders. Thirty children with autism were included using a repeated measurements design. It was investigated if the children’s interaction with a human differed from the interaction with a social robot during a play task. Also, it was examined if the two conditions differed in their ability to elicit interaction with a human accompanying the child during the task. Interaction of the children with both partners did not differ apart from the eye-contact. Participants had more eye-contact with the social robot compared to the eye-contact with the human. The conditions did not differ regarding the interaction elicited with the human accompanying the child.


Children with ASD Social skills Social robots Interaction Robot assisted therapy 



This material is based upon work supported by Agency for Innovation by Science and Technology (IWT) Strategic Basic research Grant Project Number 121591 (for the first author of this study). Other authors are supported by the CNCS-Bucharest, Romania Project PN-II-IDPCE-2011-3-0484—Exploring Robot-assisted therapy for children with ASD and the EU-FP7 project DREAM (Project No. 611391). We thank to the master students Stephanie Van der Donck and Debbie Willockx for their important contribution to the meticulous video annotation and implementation of the experiments and to the psychologists from the three Belgian schools, Griet and Ilse from De Leydraad school in Antwerp, Filip de Vos from Woudlucht school in Leuven and, Marie De Witte from De Oase school in Gent, for their assistance with recruitment and organization of the experiments.

Author Contributions

The research presented in this study represents part of a PhD work of the first author. The second author, the promoter of the PhD student, guided the research process. The first and the second author contributed to the writing of the manuscript, design, data collection, analysis, and interpretation. The third author' contribution consists in supporting the PhD student with the implementation of the experiments. The fourth author is the engineer that programmed and operated the robot during the experiments, under the supervision of her promoter, the last author of this study.


  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders, text revision (4th ed.). Washington.Google Scholar
  2. Anzalone, S. M., Tilmont, E., Boucenna, S., Xavier, J., Jouen, A. L., Bodeau, N., et al. (2014). How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D+ time) environment during a joint attention induction task with a robot. Research in Autism Spectrum Disorders, 8(7), 814–826.CrossRefGoogle Scholar
  3. Baron-Cohen, S. (2010). Empathizing, systemizing, and the extreme male brain theory of autism. Progress in Brain Research, 186, 167–175. doi: 10.1016/B978-0-444-53630-3.00011-7.PubMedCrossRefGoogle Scholar
  4. Baron-Cohen, S., Lombardo, M., Tager-Flusberg, H., & Cohen, D. (Eds.). (2013). Understanding other minds: Perspectives from developmental social neuroscience. Oxford: OUP.Google Scholar
  5. Bernard-Opitz, V., Sriram, N., & Nakhoda-Sapuan, S. (2001). Enhancing social problem solving in children with autism and normal children through computer-assisted instruction. Journal of Autism and Developmental Disorders, 31(4), 377–384.PubMedCrossRefGoogle Scholar
  6. Blumberg, S. J., Bramlett, M. D., Kogan, M. D., Schieve, L. A, Jones, J. R., & Lu, M. C. (2013). Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011–2012. National Health Statistics Reports, 65, 1–11, 1 p following 11.
  7. Bons, D., van den Broek, E., Scheepers, F., Herpers, P., Rommelse, N., & Buitelaaar, J. K. (2013). Motor, emotional, and cognitive empathy in children and adolescents with autism spectrum disorder and conduct disorder. Journal of Abnormal Child Psychology, 41(3), 425–443.PubMedCrossRefGoogle Scholar
  8. Chevallier, C., Kohls, G., Troiani, V., Brodkin, E. S., & Schultz, R. T. (2012). The social motivation theory of autism. Trends in Cognitive Sciences, 16(4), 231–239.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Cohen, B. H. (2001). Explaining psychological statistics. New York: Wiley.Google Scholar
  10. Costa, S., Santos, C., Soares, F., Ferreira, M., & Moreira, F. (2010). Promoting interaction amongst autistic adolescents using robots. Conference proceedings. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2010 (pp. 3856–3859). doi: 10.1109/IEMBS.2010.5627905.
  11. Costescu, C. A., Vanderborght, B., & David, D. O. (2014). Reversal learning task in children with Autism Spectrum Disorder: A robot-based approach. Journal of Autism and Developmental Disorders. doi: 10.1007/s10803-014-2319-z.
  12. Dautenhahn, K., Nehaniv, C., Walters, M. L., Robins, B., Kose-Bagci, H., et al. (2009). KASPAR: A minimally expressive humanoid robot for human-robot interaction research. Applied Bionics and Biomechanics, 6(3–4), 369–397.CrossRefGoogle Scholar
  13. Dautenhahn, K., & Werry, I. (2004). Towards interactive robots in autism therapy: Background, motivation and challenges. Pragmatics and Cognition, 12(1), 1–35.CrossRefGoogle Scholar
  14. De Silva, P. R. S., Tadano, K., Saito, A., Lambacher, S. G., & Higashi, M. (2009). Therapeutic-assisted robot for children with autism. In International Conference on Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ (pp. 3561–3567). IEEE.Google Scholar
  15. Deckers, A., Roelofs, J., Muris, P., & Rinck, M. (2014). Desire for social interaction in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 8(4), 449–453.CrossRefGoogle Scholar
  16. Diehl, J. J., Crowell, C. R., Villano, M., Wier, K., Tang, K., & Riek, L. D. (2014). Clinical applications of robots in autism spectrum disorder diagnosis and treatment. In Comprehensive guide to autism (pp. 411–422). Springer: New York.Google Scholar
  17. Diehl, J. J., Schmitt, L. M., Villano, M., & Crowell, C. R. (2012). The clinical use of robots for individuals with autism spectrum disorders: A critical review. Research in Autism Spectrum Disorders, 6(1), 249–262. doi: 10.1016/j.rasd.2011.05.006.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ekman, P., Friesen, W. V., & Ellsworth, P. (2013). Emotion in the human face: Guidelines for research and an integration of findings. Elsevier.Google Scholar
  19. Ferrari, E., Robins, B., & Dautenhahn, K. (2009). Therapeutic and educational objectives in robot assisted play for children with autism. In Proceedings of the 18th IEEE international symposium on robot and human interactive communication (RO-MAN 2009) (pp. 108–114). Toyama, Piscataway, NJ: IEEE. September 27–October 2Google Scholar
  20. Goris, K., Saldien, J., Vanderborght, B., & Lefeber, D. (2011a). How to achieve the huggable behavior of the social robot Probo? A reflection on the actuators. Mechatronics, 21(3), 490–500. doi: 10.1016/j.mechatronics.2011.01.001.CrossRefGoogle Scholar
  21. Goris, K., Saldien, J., Vanderborght, B., & Lefeber, D. (2011b). Mechanical design of the huggable robot Probo. International Journal of Humanoid Robotics, 08(03), 481–511. doi: 10.1142/S0219843611002563.CrossRefGoogle Scholar
  22. Hendriksen, J., & Hurks III, P. (2009). WPPSI-III-NL Wechsler preschool and primary scale of intelligence-Nederlandse bewerking.Google Scholar
  23. Huskens, B., Verschuur, R., Gillesen, J., Didden, R., & Barakova, E. (2013). Promoting question-asking in school-aged children with autism spectrum disorders: Effectiveness of a robot intervention compared to a human-trainer intervention. Developmental Neurorehabilitation, 16(5), 345–356.PubMedCrossRefGoogle Scholar
  24. Jones, W., & Klin, A. (2013). Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature, 504(7480), 427–431.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kim, E. S., Berkovits, L. D., Bernier, E. P., Leyzberg, D., Shic, F., Paul, R., & Scassellati, B. (2013). Social robots as embedded reinforcers of social behavior in children with autism. Journal of Autism and Developmental Disorders, 43(5), 1038–1049.Google Scholar
  26. Kozima, H., Michalowski, M. P., & Nakagawa, C. (2008). Keepon. International Journal of Social Robotics, 1(1), 3–18. doi: 10.1007/s12369-008-0009-8.CrossRefGoogle Scholar
  27. Kozima, H., & Nakagawa, C. (2006). Interactive robots as facilitators of childrens social development. INTECH Open Access Publisher.Google Scholar
  28. Kozima, H., Nakagawa, C., & Yasuda, Y. (2007). Children-robot interaction: A pilot study in autism therapy. Progress in Brain Research, 164, 385–400.PubMedCrossRefGoogle Scholar
  29. Lausberg, H., & Sloetjes, H. (2009). Coding gestural behavior with the NEUROGES-ELAN system. Instruments and Computers, 41(3), 841–849.Google Scholar
  30. Mitchell, P., Parsons, S., & Leonard, A. (2007). Using virtual environments for teaching social understanding to 6 adolescents with autistic spectrum disorders. Journal of Autism and Developmental Disorders, 37(3), 589–600.Google Scholar
  31. Pop, C. A., Pintea, S., Vanderborght, B., & David, D. O. (2014). Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interaction Studies, 15(2), 292–320.CrossRefGoogle Scholar
  32. Pop, C. A., Simut, R. E., Pintea, S., Saldien, J., Rusu, A. S., Vanderfaeillie, J., et al. (2013a). Social robots vs. computer display: Does the way social stories are delivered make a difference for their effectiveness on ASD children? Journal of Educational Computing Research, 49(3), 381–401.Google Scholar
  33. Pop, C., Simut, R., Pintea, S., Saldien, J., Rusu, A., David, D., et al. (2013b). Can the social robot Probo help children with autism to identify situation-based emotions? A series of single case experiments. International Journal of Humanoid Robotics,. doi: 10.1142/S0219843613500254.Google Scholar
  34. Quirmbach, L. M., Lincoln, A. J., Feinberg-Gizzo, M. J., Ingersoll, B. R., & Andrews, S. M. (2009). Social stories: Mechanisms of effectiveness in increasing game play skills in children diagnosed with autism spectrum disorder using a pretest posttest repeated measures randomized control group design. Journal of Autism and Developmental Disorders, 39(2), 299–321. doi: 10.1007/s10803-008-0628-9.PubMedCrossRefGoogle Scholar
  35. Reed, C. L., Beall, P. M., Stone, V. E., Kopelioff, L., Pulham, D. J., & Hepburn, S. L. (2007). Brief report: Perception of body posture—what individuals with autism spectrum disorder might be missing. Journal of Autism and Developmental Disorders, 37(8), 1576–1584.PubMedCrossRefGoogle Scholar
  36. Riek, L. (2012). Wizard of Oz studies in HRI: A systematic review and new reporting guidelines. Journal of Human-Robot Interaction, 1(1), 119–136. doi: 10.5898/JHRI.1.1.Riek.CrossRefGoogle Scholar
  37. Robins, B., Dautenhahn, K., & Dubowski, J. (2006). Does appearance matter in the interaction of children with autism with a humanoid robot? Interaction Studies, 7(3), 509–542. doi: 10.1075/is.7.3.16rob.CrossRefGoogle Scholar
  38. Robins, B., Dickerson, P., Stribling, P., & Dautenhahn, K. (2004). Robot-mediated joint attention in children with autism: A case study in robot–human interaction. Interaction Studies, 5(2), 161–198. doi: 10.1075/is.5.2.02rob.CrossRefGoogle Scholar
  39. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161.CrossRefGoogle Scholar
  40. Saldien, J. (2009). The development of the huggable social robot Probo. Journal of Physical Agents, 2(2), 3–12.Google Scholar
  41. Saldien, J., Goris, K., Yilmazyildiz, S., Verhelst, W., & Lefeber, D. (2008). On the design of the huggable robot Probo. Journal of Physical Agents, 2(2), 3–12.Google Scholar
  42. Scassellati, B., Admoni, H., & Matarić, M. (2012). Robots for use in autism research. Annual Review of Biomedical Engineering, 14, 275–294. doi: 10.1146/annurev-bioeng-071811-150036.PubMedCrossRefGoogle Scholar
  43. Scattone, D. (2007). Social skills interventions for children with autism. Psychology in the Schools, 44(7), 717–726.CrossRefGoogle Scholar
  44. Simut, R., Vanderfaeillie, J., Vanderborght, B., Pop, C., Pintea, S., Rusu, A., & David, D. (2012). Is the social robot Probo an added value for Social Story intervention for children with autism spectrum disorders? In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction (pp. 235–236).Google Scholar
  45. Tapus, A., Peca, A., Aly, A., Pop, C., Jisa, L., Pintea, S., et al. (2012). Children with autism social engagement in interaction with Nao, an imitative robot: A series of single case experiments. Interaction Studies, 13(3), 315–347.CrossRefGoogle Scholar
  46. Tellegen, P. J., Winkel, M., Wijnberg-Williams, B. J., & Laros, J. A. (1998). Snijders-Oomen Niet-verbale Intelligentietest, SON-R 21/2-7: Verantwoording en handleiding [Snijders-Oomen Nonverbal Intelligence Test, SON-R 21/2-7: Manual].Google Scholar
  47. Thill, S., Pop, C. A., Belpaeme, T., Ziemke, T., & Vanderborght, B. (2012). Robot-assisted therapy with (partially) autonomous control: Challenges and outlook. Paladyn, 3(4), 209–217.Google Scholar
  48. Vanderborght, B., Simut, R., Saldien, J., Pop, C., Rusu, A. S., Pintea, S., et al. (2012). Using the social robot Probo as a social story telling agent for children with ASD. Interaction Studies, 13(3), 348–372.CrossRefGoogle Scholar
  49. Vismara, L. A., & Lyons, G. L. (2007). Using perseverative interests to elicit joint attention behaviors in young children with autism theoretical and clinical implications for understanding motivation. Journal of Positive Behavior Interventions, 9(4), 214–228.CrossRefGoogle Scholar
  50. Wainer, J., Dautenhahn, K., Robins, B., & Amirabdollahian, F. (2013). A pilot study with a novel setup for collaborative play of the humanoid robot KASPAR with children with autism. International Journal of Social Robotics, 6(1), 45–65. doi: 10.1007/s12369-013-0195-x.CrossRefGoogle Scholar
  51. Wainer, J., Ferrari, E., Dautenhahn, K., & Robins, B. (2010). The effectiveness of using a robotics class to foster collaboration among groups of children with autism in an exploratory study. Personal and Ubiquitous Computing, 14(5), 445–455.Google Scholar
  52. Warren, Z. E., Zheng, Z., Swanson, A. R., Bekele, E., Zhang, L., Crittendon, J. A., et al. (2013). Can robotic interaction improve joint attention skills? Journal of autism and developmental disorders,. doi: 10.1007/s10803-013-1918-4.Google Scholar
  53. Weiss, M. J., & Harris, S. L. (2001). Teaching social skills to people with autism. Behavior Modification, 25(5), 785–802. doi: 10.1177/0145445501255007.PubMedCrossRefGoogle Scholar
  54. Zwickel, J., White, S. J., Coniston, D., Senju, A., & Frith, U. (2011). Exploring the building blocks of social cognition: Spontaneous agency perception and visual perspective taking in autism. Social Cognitive and Affective Neuroscience, 6(5), 564–571.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ramona E. Simut
    • 1
  • Johan Vanderfaeillie
    • 1
  • Andreea Peca
    • 2
  • Greet Van de Perre
    • 3
  • Bram Vanderborght
    • 3
  1. 1.Department of Clinical and Lifespan PsychologyVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Clinical Psychology and PsychotherapyBabes-Bolyai UniversityCluj-NapocaRomania
  3. 3.Robotics and Multibody Mechanics Research GroupVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations