Journal of Autism and Developmental Disorders

, Volume 46, Issue 1, pp 342–351 | Cite as

Re-conceptualizing ASD Within a Dimensional Framework: Positive, Negative, and Cognitive Feature Clusters



Introduction of the National Institute of Mental Health’s Research Domain Criteria and revision of diagnostic classification for Autism Spectrum Disorder in the latest diagnostic manual call for a new way of conceptualizing heterogeneous ASD features. We propose a novel conceptualization of ASD, borrowing from the schizophrenia literature in clustering ASD features along positive, negative, and cognitive dimensions. We argue that this dimensional conceptualization can offer improved ability to classify, diagnose, and treat, to apply and predict response to treatment, and to explore underlying neural and genetic alterations that may contribute to particular feature clusters. We suggest the proposed conceptualization can advance the field in a manner that may prove clinically and biologically useful for understanding and addressing heterogeneity within ASD.


Autism spectrum disorder Symptoms Heterogeneity Classification Diagnosis RDoC 


  1. Andari, E., Duhamel, J. R., Zalla, T., Herbrecht, E., Leboyer, M., & Sirigu, A. (2010). Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proceedings of the National Academy of Sciences, 107(9), 4389–4394. doi:10.1073/pnas.0910249107.CrossRefGoogle Scholar
  2. Andreasen, N. C. (1984). Scale for the assessment of positive symptoms. Iowa City: University of Iowa.Google Scholar
  3. Andreasen, N. C. (1989). Scale for the assessment of negative symptoms (SANS): Conceptual and theoretical foundations. The British Journal of Psychiatry, (7), 49–58.Google Scholar
  4. Andreasen, N. C., & Olsen, S. (1982). Negative v positive schizophrenia: definition and validation. Archives of General Psychiatry, 39(7), 789.PubMedCrossRefGoogle Scholar
  5. Angrist, B., Rotrosen, J., & Gershon, S. (1980). Differential effects of amphetamine and neuroleptics on negative vs. positive symptoms in schizophrenia. Psychopharmacology (Berl), 72(1), 17–19.CrossRefGoogle Scholar
  6. Association, A. P. (2013). DSM 5: American Psychiatric Association.Google Scholar
  7. Association AP. (1968). DSM-II. Diagnostic and Statistical Manual of Mental Disorders (2nd ed.). USA: American Psychiatric Association.Google Scholar
  8. Baranek, G. T. (1999). Autism during infancy: A retrospective video analysis of sensory-motor and social behaviors at 9–12 months of age. Journal of Autism and Developmental Disorders, 29(3), 213–224.PubMedCrossRefGoogle Scholar
  9. Barch, D. M. (2005). The cognitive neuroscience of schizophrenia. Annual Review of Clinical Psychology, 1, 321–353. doi:10.1146/annurev.clinpsy.1.102803.143959.PubMedCrossRefGoogle Scholar
  10. Barch, D. M., Bustillo, J., Gaebel, W., Gur, R., Heckers, S., Malaspina, D., & Carpenter, W. (2013). Logic and justification for dimensional assessment of symptoms and related clinical phenomena in psychosis: relevance to DSM-5. Schizophrenia Research, 150(1), 15–20. doi:10.1016/j.schres.2013.04.027.PubMedCrossRefGoogle Scholar
  11. Barch, D. M., & Ceaser, A. (2012). Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci, 16(1), 27–34. doi:10.1016/j.tics.2011.11.015.PubMedCrossRefGoogle Scholar
  12. Barton, M. L., Dumont-Mathieu, T., & Fein, D. (2012). Screening young children for autism spectrum disorders in primary practice. Journal of Autism and Developmental Disorders, 42(6), 1165–1174. doi:10.1007/s10803-011-1343-5.PubMedCrossRefGoogle Scholar
  13. Bernier, R., Golzio, C., Xiong, B., Stessman, H. A., Coe, B. P., Penn, O., & Eichler, E. E. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 158(2), 263–276. doi:10.1016/j.cell.2014.06.017.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Blanchard, J. J., & Cohen, A. S. (2006). The structure of negative symptoms within schizophrenia: implications for assessment. Schizophrenia Bulletin, 32(2), 238–245. doi:10.1093/schbul/sbj013.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bleuler, E. (1950). Dementia praecox or the group of schizophrenias.Google Scholar
  16. Bora, E., & Murray, R. M. (2014). Meta-analysis of cognitive deficits in ultra-high risk to psychosis and first-episode psychosis: do the cognitive deficits progress over, or after, the onset of psychosis? Schizophrenia Bulletin, 40(4), 744–755. doi:10.1093/schbul/sbt085.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bruining, H., de Sonneville, L., Swaab, H., de Jonge, M., Kas, M., van Engeland, H., & Vorstman, J. (2010). Dissecting the clinical heterogeneity of autism spectrum disorders through defined genotypes. PLoS ONE, 5(5), e10887. doi:10.1371/journal.pone.0010887.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brunelin, J., Mondino, M., Haesebaert, F., Saoud, M., Suaud-Chagny, M. F., & Poulet, E. (2012). Efficacy and safety of bifocal tDCS as an interventional treatment for refractory schizophrenia. Brain Stimul, 5(3), 431–432. doi:10.1016/j.brs.2011.03.010.PubMedCrossRefGoogle Scholar
  19. Brunsdon, V. E., & Happé, F. (2014). Exploring the ‘fractionation’ of autism at the cognitive level. Autism, 18(1), 17–30. doi:10.1177/1362361313499456.PubMedCrossRefGoogle Scholar
  20. Cascio, C. J., Foss-Feig, J. H., Heacock, J., Schauder, K. B., Loring, W. A., Rogers, B. P., & Bolton, S. (2014). Affective neural response to restricted interests in autism spectrum disorders. Journal of Child Psychology and Psychiatry, 55(2), 162–171. doi:10.1111/jcpp.12147.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen, L., Johnston, J., Kinon, B., Stauffer, V., Succop, P., Marques, T., & Ascher-Svanum, H. (2013). The longitudinal interplay between negative and positive symptom trajectories in patients under antipsychotic treatment: a post hoc analysis of data from a randomized, 1-year pragmatic trial. BMC Psychiatry, 13, 320.
  22. Chien, W. T., & Yip, A. L. (2013). Current approaches to treatments for schizophrenia spectrum disorders, part I: an overview and medical treatments. Neuropsychiatr Dis Treat, 9, 1311–1332. doi:10.2147/NDT.S37485.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Coyle, J. T. (2006). Glutamate and schizophrenia: beyond the dopamine hypothesis. Cellular and Molecular Neurobiology, 26(4–6), 365–384.PubMedGoogle Scholar
  24. Delvecchio, G., Fossati, P., Boyer, P., Brambilla, P., Falkai, P., Gruber, O., & Frangou, S. (2012). Common and distinct neural correlates of emotional processing in Bipolar Disorder and Major Depressive Disorder: A voxel-based meta-analysis of functional magnetic resonance imaging studies. European Neuropsychopharmacology, 22(2), 100–113. doi:10.1016/j.euroneuro.2011.07.003.PubMedCrossRefGoogle Scholar
  25. Fatouros-Bergman, H., Cervenka, S., Flyckt, L., Edman, G., & Farde, L. (2014). Meta-analysis of cognitive performance in drug-naive patients with schizophrenia. Schizophrenia Research, 158(1–3), 156–162. doi:10.1016/j.schres.2014.06.034.PubMedCrossRefGoogle Scholar
  26. Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111. doi:10.1016/j.conb.2007.01.009.PubMedCrossRefGoogle Scholar
  27. Goff, D. C., Freudenreich, O., & Evins, A. E. (2001). Augmentation strategies in the treatment of schizophrenia. CNS Spectr, 6(11), 904, 907–911.Google Scholar
  28. Goff, D. C., Leahy, L., Berman, I., Posever, T., Herz, L., Leon, A. C., & Lynch, G. (2001b). A placebo-controlled pilot study of the ampakine CX516 added to clozapine in schizophrenia. Journal of Clinical Psychopharmacology, 21(5), 484–487.PubMedCrossRefGoogle Scholar
  29. Grzadzinski, R., Huerta, M., & Lord, C. (2013). DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes. Mol Autism, 4(1), 12.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Happe, F. (2011). Criteria, categories, and continua: autism and related disorders in DSM-5. Journal of the American Academy of Child and Adolescent Psychiatry, 50(6), 540–542.PubMedCrossRefGoogle Scholar
  31. Happe, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9(10), 1218–1220. doi:10.1038/nn1770.PubMedCrossRefGoogle Scholar
  32. Harvey, P. D., & Keefe, R. S. (2001). Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. American Journal of Psychiatry, 158(2), 176–184.PubMedCrossRefGoogle Scholar
  33. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., & Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748–751.PubMedCrossRefGoogle Scholar
  34. Jablensky, A. (2006). Subtyping schizophrenia: implications for genetic research. Mol Psychiatry, 11(9), 815–836. doi:10.1038/ Scholar
  35. Jeste, S. S., & Geschwind, D. H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol, 10(2), 74–81. doi:10.1038/nrneurol.2013.278.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–278.PubMedCrossRefGoogle Scholar
  37. Kempton, M. J., Salvador, Z., Munafò, M. R., et al. (2011). Structural neuroimaging studies in major depressive disorder: Meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675–690. doi:10.1001/archgenpsychiatry.2011.60.PubMedCrossRefGoogle Scholar
  38. Kenworthy, L., Anthony, L. G., Naiman, D. Q., Cannon, L., Wills, M. C., Luong-Tran, C., & Wallace, G. L. (2014). Randomized controlled effectiveness trial of executive function intervention for children on the autism spectrum. Journal of Child Psychology and Psychiatry, 55(4), 374–383. doi:10.1111/jcpp.12161.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Koegel, R. L., Vernon, T. W., & Koegel, L. K. (2009). Improving social initiations in young children with autism using reinforcers with embedded social interactions. Journal of Autism and Developmental Disorders, 39(9), 1240–1251. doi:10.1007/s10803-009-0732-5.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Krystal, J. H., D’Souza, D. C., Mathalon, D., Perry, E., Belger, A., & Hoffman, R. (2003). NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl), 169(3–4), 215–233.CrossRefGoogle Scholar
  41. Leucht, S., Corves, C., Arbter, D., Engel, R., Li, C., & Davis, J. (2009). Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet, 373, 31–41. doi:10.1016/S0140-6736(08)61764-X.PubMedCrossRefGoogle Scholar
  42. Levkovitz, Y., Mendlovich, S., Riwkes, S., Braw, Y., Levkovitch-Verbin, H., Gal, G., & Kron, S. (2010). A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia. Journal of Clinical Psychiatry, 71(2), 138–149. doi:10.4088/JCP.08m04666yel.PubMedCrossRefGoogle Scholar
  43. Linscott, R. J., & van Os, J. (2010). Systematic reviews of categorical versus continuum models in psychosis: evidence for discontinuous subpopulations underlying a psychometric continuum. Implications for DSM-V, DSM-VI, and DSM-VII. Annual Review of Clinical Psychology, 6, 391–419. doi:10.1146/annurev.clinpsy.032408.153506.PubMedCrossRefGoogle Scholar
  44. Lisman, J. (2012). Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Current Opinion in Neurobiology, 22(3), 537–544. doi:10.1016/j.conb.2011.10.018.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Lord, C. (1995). Follow-up of two-year-olds referred for possible autism. J. Child Psychol. Psychiat., 36(8), 1365–1382.PubMedCrossRefGoogle Scholar
  46. Lord, C., Petkova, E., Hus, V., Gan, W., Lu, F., Martin, D. M., & Risi, S. (2012). A multisite study of the clinical diagnosis of different autism spectrum disorders. Archives of General Psychiatry, 69(3), 306–313. doi:10.1001/archgenpsychiatry.2011.148.PubMedPubMedCentralCrossRefGoogle Scholar
  47. MacDonald, R., Green, G., Mansfield, R., Geckeler, A., Gardenier, N., Anderson, J., & Sanchez, J. (2007). Stereotypy in young children with autism and typically developing children. Research in Developmental Disabilities, 28(3), 266–277. doi:10.1016/j.ridd.2006.01.004.PubMedCrossRefGoogle Scholar
  48. Mahjouri, S., & Lord, C. E. (2012). What the DSM-5 portends for research, diagnosis, and treatment of autism spectrum disorders. Curr Psychiatry Rep, 14(6), 739–747. doi:10.1007/s11920-012-0327-2.PubMedCrossRefGoogle Scholar
  49. Marder, S. R. (2011). Lessons from MATRICS. Schizophrenia Bulletin, 37(2), 233–234. doi:10.1093/schbul/sbq166.PubMedPubMedCentralCrossRefGoogle Scholar
  50. McPartland, J. C., Coffman, M., & Pelphrey, K. A. (2011). Recent advances in understanding the neural bases of autism spectrum disorder. Current Opinion in Pediatrics, 23(6), 628–632. doi:10.1097/MOP.0b013e32834cb9c9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. McPheeters, M. L., Warren, Z., Sathe, N., Bruzek, J. L., Krishnaswami, S., Jerome, R. N., & Veenstra-Vanderweele, J. (2011). A systematic review of medical treatments for children with autism spectrum disorders. Pediatrics, 127(5), e1312–e1321. doi:10.1542/peds.2011-0427.PubMedCrossRefGoogle Scholar
  52. Mohr, P. E., Cheng, C. M., Claxton, K., Conley, R. R., Feldman, J. J., Hargreaves, W. A., & Neumann, P. J. (2004). The heterogeneity of schizophrenia in disease states. Schizophrenia Research, 71(1), 83–95. doi:10.1016/j.schres.2003.11.008.PubMedCrossRefGoogle Scholar
  53. Nuechterlein, K. H., Barch, D. M., Gold, J. M., Goldberg, T. E., Green, M. F., & Heaton, R. K. (2004). Identification of separable cognitive factors in schizophrenia. Schizophrenia Research, 72(1), 29–39. doi:10.1016/j.schres.2004.09.007.PubMedCrossRefGoogle Scholar
  54. Ornitz, E. M. (1969). Disorders of perception common to early infantile autism and schizophrenia. Comprehensive Psychiatry, 10(4), 259–274.PubMedCrossRefGoogle Scholar
  55. Rabinowitz, J., Levine, S. Z., Garibaldi, G., Bugarski-Kirola, D., Berardo, C. G., & Kapur, S. (2012). Negative symptoms have greater impact on functioning than positive symptoms in schizophrenia: analysis of CATIE data. Schizophrenia Research, 137(1–3), 147–150. doi:10.1016/j.schres.2012.01.015.PubMedCrossRefGoogle Scholar
  56. Reichenberg, A., Harvey, P. D., Bowie, C. R., Mojtabai, R., Rabinowitz, J., Heaton, R. K., & Bromet, E. (2009). Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophrenia Bulletin, 35(5), 1022–1029. doi:10.1093/schbul/sbn044.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Rubenstein, J., & Merzenich, M. (2003). Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2, 255–267. doi:10.1046/j.1601-183X.2003.00037.x.CrossRefGoogle Scholar
  58. Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., & Murphy, D. G. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59(1), 7–16. doi:10.1016/j.biopsych.2005.06.007.PubMedCrossRefGoogle Scholar
  59. Siever, L. J., Kalus, O. F., & Keefe, R. S. (1993). The boundaries of schizophrenia. Psychiatric Clinics of North America, 16(2), 217–244.PubMedGoogle Scholar
  60. Silverman, J. L., Yang, M., Lord, C., & Crawley, J. N. (2010). Behavioural phenotyping assays for mouse models of autism. Nature Reviews Neuroscience, 11(7), 490–502.PubMedPubMedCentralCrossRefGoogle Scholar
  61. South, M., Ozonoff, S., & McMahon, W. M. (2005). Repetitive behavior profiles in Asperger syndrome and high-functioning autism. Journal of Autism and Developmental Disorders, 35(2), 145–158.PubMedCrossRefGoogle Scholar
  62. Tamminga, C. A., & Holcomb, H. H. (2005). Phenotype of schizophrenia: a review and formulation. Mol Psychiatry, 10(1), 27–39. doi:10.1038/ Scholar
  63. Tandon, R. (2012). The nosology of schizophrenia: toward DSM-5 and ICD-11. Psychiatric Clinics of North America, 35(3), 557–569. doi:10.1016/j.psc.2012.06.001.PubMedCrossRefGoogle Scholar
  64. Tandon, R., Gaebel, W., Barch, D. M., Bustillo, J., Gur, R. E., Heckers, S., & Carpenter, W. (2013). Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 150(1), 3–10. doi:10.1016/j.schres.2013.05.028.PubMedCrossRefGoogle Scholar
  65. Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168. doi:10.1016/j.neuron.2006.09.020.PubMedCrossRefGoogle Scholar
  66. Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11(2), 100–113. doi:10.1038/nrn2774.PubMedCrossRefGoogle Scholar
  67. Volkmar, F. R., & McPartland, J. C. (2014). From Kanner to DSM-5: autism as an evolving diagnostic concept. Annual Review of Clinical Psychology, 10, 193–212. doi:10.1146/annurev-clinpsy-032813-153710.PubMedCrossRefGoogle Scholar
  68. Willemsen-Swinkels, S. H. N., & Buitelaar, J. K. (2002). The autistic spectrum: subgroups, boundaries, and treatment. Psychiatric Clinics of North America, 25(4), 811–836.PubMedCrossRefGoogle Scholar
  69. Wolff, J. J., Hupp, S. C., & Symons, F. J. (2013). Brief report: Avoidance extinction as treatment for compulsive and ritual behavior in autism. Journal of Autism and Developmental Disorders, 43(7), 1741–1746. doi:10.1007/s10803-012-1721-7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Yale University Child Study CenterNew HavenUSA
  2. 2.Department of PsychiatryYale UniversityNew HavenUSA

Personalised recommendations