Skip to main content
Log in

Autistic Traits and Enhanced Perceptual Representation of Pitch and Time

  • S.I. : Local vs. Global processing in Autism Spectrum Disorders
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Enhanced basic perceptual discrimination has been reported for pitch in individuals with autism spectrum conditions. We test whether there is a correlational pattern of enhancement across the broader autism phenotype and whether this correlation occurs for the discrimination of pitch, time and loudness. Scores on the Autism-Spectrum Quotient correlated significantly with the pitch discrimination (r = −0.51, p < 0.05) and the time-interval discrimination (r = −0.45, p < 0.05) task that were based on a fixed reference. No correlation was found for intensity discrimination based on a fixed reference, nor for a variable reference based time-interval discrimination. The correlations suggest a relationship between autistic traits and the ability to form an enhanced, stable and highly accurate representation of auditory events in the pitch and time dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida, R. A., Dickinson, J. E., Maybery, M. T., Badcock, J. C., & Badcock, D. R. (2010). A new step towards understanding embedded figures test performance in the autism spectrum: The radial frequency search task. Neuropsychologia, 48, 374–381.

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (5th edition ed.). Washington D.C.

  • Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5–17.

    Article  PubMed  Google Scholar 

  • Bayliss, A. P., & Tipper, S. P. (2005). Gaze and arrow cueing of attention reveals individual differences along the autism spectrum as a function of target context. British Journal of Psychology, 96(Pt 1), 95–114.

    Article  PubMed  Google Scholar 

  • Becker, M. W., & Rasmussen, I. P. (2007). The rhythm after effect: Support for time sensitive neurons with broad overlapping tuning curves. Brain and Cognition, 64(3), 274–281.

    Article  PubMed  Google Scholar 

  • Bendor, D., & Wang, X. (2005). The neuronal representation of pitch in primate auditory cortex. Nature, 436(7054), 1161–1165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128(10), 2430–2441.

    Article  PubMed  Google Scholar 

  • Bishop, D. V., Maybery, M., Maley, A., Wong, D., Hill, W., & Hallmayer, J. (2004). Using self-report to identify the broad phenotype in parents of children with autistic spectrum disorders: A study using the autism-spectrum quotient. Journal of Child Psychology and Psychiatry and Allied Disciplines, 45(8), 1431–1436.

    Article  Google Scholar 

  • Bonnel, A., McAdams, S., Smith, B., Berthiaume, C., Bertone, A., Ciocca, V., et al. (2010). Enhanced pure-tone pitch discrimination among persons with autism but not asperger syndrome. Neuropsychologia, 48(9), 2465–2475.

    Article  PubMed  Google Scholar 

  • Bonnel, A., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A. M. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 226–235.

    Article  PubMed  Google Scholar 

  • Chi, T., Gao, Y., Guyton, M. C., Ru, P., & Shamma, S. (1999). Spectro-temporal modulation transfer functions and speech intelligibility. Journal of the Acoustical Society of America, 106(5), 2719–2732.

    Article  PubMed  Google Scholar 

  • Clark, A., Hughes, P., Grube, M., & Stewart, M. E. (2013). Autistic traits and sensitivity to interference with flavour identification. Autism Research, 6, 332–336.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (Second (Edition ed.). Hillsdale, New Jersey: Lawrence Erblaum Associates.

    Google Scholar 

  • Dawson, G., Estes, A., Munson, J., Schellenberg, G., Bernier, R., & Abbott, R. (2007). Quantitative assessment of autism symptom-related traits in probands and parents: Broader phenotype autism symptom scale. Journal of Autism and Developmental Disorders, 37(3), 523–536.

    Article  PubMed  Google Scholar 

  • Deary, I., Bell, P. J., Bell, A. J., Campbell, M. L., & Fazal, N. D. (2004). Sensory discrimination and intelligence: Testing Spearman’s other hypothesis. Health Psychology, 117(1), 118.

    Google Scholar 

  • Fugard, A. J. B., Stewart, M. E., & Stenning, K. (2011). Visual/verbal-analytic reasoning bias as a function of self-reported autistic-like traits: a study of typically developing individuals solving Raven’s advanced progressive matrices. Autism, 15(3), 327–340.

    Article  PubMed  Google Scholar 

  • Gomot, M., Belmonte, M. K., Bullmore, E. T., Bernard, F. A., & Baron-Cohen, S. (2008). Brain hyper-reactivity to auditory novel targets in children with high-functioning autism. Brain: A Journal of Neurology, 131(9), 2479–2488.

    Article  Google Scholar 

  • Gomot, M., Giard, M. H., Adrien, J. L., Barthelemy, C., & Bruneau, N. (2002). Hypersensitivity to acoustic change in children with autism: Electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology, 39(5), 577–584.

    Article  PubMed  Google Scholar 

  • Griffiths, T. D. (2003). Functional imaging of pitch analysis. Annals of the New York Academy of Sciences, 999, 40–49.

    Article  PubMed  Google Scholar 

  • Griffiths, T. D., Kumar, S., Sedley, W., Nourski, K., Kawasaki, H., Oya, H., et al. (2010). Direct recordings of pitch responses from human auditory cortex. Current Biology, 20, 1128–1132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grinter, E. J., Maybery, M. T., Van Beek, P. L., Pellicano, E., Badcock, J. C., & Badcoack, D. R. (2009a). Global visual processing and self-rated autistic-like traits. Journal of Autism and Developmental Disorders, 39(9), 1278–1290.

    Article  PubMed  Google Scholar 

  • Grinter, E. J., Van Beek, P. L., Maybery, M. T., Badcock, D. R., Grinter, E. J., Van Beek, P. L., et al. (2009b). Brief report: Visuospatial analysis and self-rated autistic-like traits. Journal of Autism and Developmental Disorders, 39(4), 670–677.

    Article  PubMed  Google Scholar 

  • Grube, M., Cooper, F. E., Chinnery, P. F., & Griffiths, T. D. (2010). Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proceedings of the National Academy of Sciences of the U S A, 107, 11597–11601.

    Article  Google Scholar 

  • Grube, M., & Griffiths, T. D. (2009). Metricality-enhanced temporal encoding and the subjective perception of rhythmic sequences. Cortex, 45(1), 72–79.

    Article  PubMed  Google Scholar 

  • Hamel, R., & Schmittmann, V. D. (2006). The 20-minute version as a predictor of the Raven advanced progressive matrices test. Educational and Psychological Measurement, 66(6), 1039–1046.

    Article  Google Scholar 

  • Heaton, P., & Heaton, P. (2003). Pitch memory, labelling and disembedding in autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 44(4), 543–551.

    Article  Google Scholar 

  • Heaton, P., & Heaton, P. (2005). Interval and contour processing in autism. Journal of Autism and Developmental Disorders, 35(6), 787–793.

    Article  PubMed  Google Scholar 

  • Heron, J., Aaen-Stockdale, C., Hotchkiss, J., Roach, N. W., McGraw, P. V., & Whitaker, D. (2011). Duration channels mediate human time perception. Biological Sciences: Proceedings of the Royal Society B.

    Google Scholar 

  • Hurley, R. S. E., Losh, M., Parlier, M., Reznick, J. S., & Piven, J. (2007). The broad autism phenotype questionnaire. Journal of Autism and Developmental Disorders, 37, 1679–1690.

    Article  PubMed  Google Scholar 

  • Ivry, R. B. (1996). The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 6(6), 851–857.

    Article  PubMed  Google Scholar 

  • Jancke, L., Shah, N. J., Posse, S., Grosse-Ryuken, M., & Muller-Gartner, H. W. (1998). Intensity coding of auditory stimuli: An fMRI study. Neuropsychologia, 36(9), 875–883.

    Article  PubMed  Google Scholar 

  • Jones, C. R., Happe, F., Baird, G., Simonoff, E., Marsden, A. J., Tregay, J., et al. (2009). Auditory discrimination and auditory sensory behaviours in autism spectrum disorders. Neuropsychologia, 47(13), 2850–2858.

    Article  PubMed  Google Scholar 

  • Jusczyk, P. (1999). How infants begin to extract words from speech. Trends in Cognitive Sciences, 3(9), 323–328.

    Article  PubMed  Google Scholar 

  • Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127(Pt 8), 1811–1821.

    Article  PubMed  Google Scholar 

  • Kargas, N., López, B., Reddy, V., & Morris, P. (2015). The relationship between auditory processing and restricted repetitive behaviors in adults with autism spectrum disorders. Journal of Autism and Developmental Disorders, 45, 658–668.

    Article  PubMed  Google Scholar 

  • Klatt, D. H. (1976). Linguistic uses of segmental duration in English: acoustic and perceptual evidence. Journal of the Acoustical Society of America, 59(5), 1208–1221.

    Article  PubMed  Google Scholar 

  • Kurita, H., Koyama, T., & Osada, H. (2005). Autism-spectrum quotient-Japanese version and its short forms for screening normally intelligent persons with pervasive developmental disorders. Psychiatry and Clinical Neurosciences, 59(4), 490–496.

    Article  PubMed  Google Scholar 

  • Levitt, H. (1971) Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America 49(2), Suppl 2, 467–477.

  • Lewis, P. A., & Miall, R. C. (2003). Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia, 41(12), 1583–1592.

    Article  PubMed  Google Scholar 

  • Liberman, A. M., Delattre, P. C., Gerstmann, L. J., & Cooper, F. S. (1956). Tempo of frequency change as a cue for distinguishing classes of speech sounds. Journal of Experimental Psychology, 52(2), 127–137.

    Article  PubMed  Google Scholar 

  • Lisker, L., & Abramson, A. S. (1964). A cross-language study of voicing in initial stops: Acoustical measurements. Word, 20, 384–422.

    Article  Google Scholar 

  • Lisker, L., & Abramson, A. S. (1967). Some effects of context on voice onset time in English stops. Language and Speech, 10(1), 1–28.

    Article  PubMed  Google Scholar 

  • London, J. (2004). Hearing in time. New York: Oxford University Press.

    Book  Google Scholar 

  • McAdams, S., & Drake, C. (2002). Auditory perception and cognition. In S. Yantis (Ed.), Sensation and perception (3rd ed., Vol. 1, pp. 424–432). New York: John Wiley.

    Google Scholar 

  • Meilleur, A.-A. S., Berthiaume, C., Bertone, A., & Mottron, L. (2014). Autism-specific covariation in perceptual performances: “g” or “p” Factor? PLoS ONE, 9(8), 1–13. doi:10.1371/journal.pone.0103781.

    Article  Google Scholar 

  • Merchant, H., Zarco, W., Bartolo, R., & Prado, L. (2008). The context of temporal processing is represented in the multidimensional relationships between timing tasks. PLoS ONE, 3(9), e3169.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monahan, C. B., & Hirsh, I. J. (1990). Studies in auditory timing: 2. Rhythm patterns. Perception and Psychophysics, 47(3), 227–242.

    Article  PubMed  Google Scholar 

  • Mottron, L., & Burack, J. (2001). Enhanced perceptual functioning in the development of autism. In J. A. Burack, T. Charman, N. Yirmiya, & P. R. Zelazo (Eds.), The development of autism: Perspectives from theory and research. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.

    Article  PubMed  Google Scholar 

  • Muniz, J., Garcia-Cueto, E., & Lozano, L. M. (2005). Item format and the psychometric properties of the Eysenck personality questionnaire. Personality and Individual Differences, 38(1), 61–69.

    Article  Google Scholar 

  • Näätänen, R., Paavilained, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118, 2544–2590.

    Article  PubMed  Google Scholar 

  • Neuner, I., Kawohl, W., Arrubla, J., Warbrick, T., Hitz, K., Wyss, C., et al. (2014). Cortical response variation with different sound pressure levels: A combined event-related potentials and fmri study. PLOSONE, 9(10), e109216.

    Article  Google Scholar 

  • O’Riordan, M., & Passetti, F. (2006). Discrimination in autism within different sensory modalities. Journal of Autism and Developmental Disorders, 36(5), 665–675.

    Article  PubMed  Google Scholar 

  • O’Riordan, M., & Plaisted, K. (2001). Enhanced discrimination in autism. The Quarterly Journal of Experimental Psychology, 54A(4), 961–979.

    Article  Google Scholar 

  • Penhune, V. B., Zattore, R. J., & Evans, A. C. (1998). Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience, 10(6), 752–765.

    Article  PubMed  Google Scholar 

  • Plack, C. J., Oxenham, A. J., Fay, R. R., & Popper, A. N. (2005). Pitch neural coding and perception (Vol. 24). New York: Springer.

    Google Scholar 

  • Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced discrimination of novel, highly similar stimuli by adults with autism during a perceptual learning task. Journal of Child Psychology and Psychiatry, 39(5), 765–775.

    Article  PubMed  Google Scholar 

  • Plaisted, K., Saksida, L., Alcántara, J., & Weisblatt, E. (2003). Towards an understanding of the mechanisms of weak central coherence effects: Experiments in visual configural learning and auditory perception. Philosophical Transactions of the Royal Society, 358, 375–386.

    Article  Google Scholar 

  • Povel, D. J., & Essens, P. (1985). Perception of temporal patterns. Music Perception, 2, 411–440.

    Article  Google Scholar 

  • Rammsayer, T. H., & Brandler, S. (2004). Aspects of temporal information processing: A dimensional analysis. Psychological Research, 69(1–2), 115–123.

    Article  PubMed  Google Scholar 

  • Raven, J. C., Raven, J. E., & Court, J. H. (1998). Section 4: Advanced progressive matrices. Oxford, UK: Oxford Psychologists Press.

    Google Scholar 

  • Rosen, S. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosphical Transactions of the Royal Society B: Biological Sciences, 336(1278), 367–373.

    Article  Google Scholar 

  • Samson, F., Hyde, K. L., Bertone, A., Soulières, I., Mendrek, A., Ahad, P., et al. (2011). Atypical processing of auditory temporal complexity in autistics. Neuropsychologia, 49, 546–555.

    Article  PubMed  Google Scholar 

  • Samson, F., Mottron, L., Soulières, I., & Zeffiro, T. A. (2012). Enhanced visual functioning in autism: An ale meta-analysis. Human Brain Mapping, 33, 1553–1581.

    Article  PubMed  Google Scholar 

  • Schonwiesner, M., von Cramon, D. Y., & Rubsamen, R. (2002). Is it tonotopy after all? Neuroimage, 17(3), 1144–1161.

    Article  PubMed  Google Scholar 

  • Scott, D. R. (1982). Duration as a cue to the perception of a phrase boundary. Journal of the Acoustical Society of America, 71(4), 996–1007.

    Article  PubMed  Google Scholar 

  • Shah, A., & Frith, U. (1983). An islet of ability in autistic children: A research note. Journal of Child Psychology and Psychiatry, 24(4), 613–620.

    Article  PubMed  Google Scholar 

  • Shah, A., & Frith, U. (1993). Why do autistic individuals show superior performance on the block design task? Journal of Child Psychology and Psychiatry, 34(8), 1351–1364.

    Article  PubMed  Google Scholar 

  • Stewart, M. E., & Ota, M. (2008). Lexical effects on speech perception in individuals with “autistic” traits. Cognition, 109(1), 157–162.

    Article  PubMed  Google Scholar 

  • Stewart, M. E., Watson, J., Allcock, A.-J., & Yaqoob, T. (2009). Autistic traits predict performance on the block design. Autism : The international journal of research and practice, 13(2), 133–142.

    Article  Google Scholar 

  • Tanji, K., Leopold, D. A., Ye, F. Q., Zhu, C., Malloy, M., Saunders, R. C., et al. (2010). Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey. Neuroimage, 49(1), 150–157.

    Article  PubMed  Google Scholar 

  • Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31(10), 3805–3812.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: The Psychological Corporation.

    Google Scholar 

  • Xu, D., Liu, T., Ashe, J., & Bushara, K. O. (2006). Role of the olivo-cerebellar system in timing. Journal of Neuroscience, 26(22), 5990–5995.

    Article  PubMed  Google Scholar 

  • Zatorre, R. J. (2003). Absolute pitch: a model for understanding the influence of genes and development on neural and cognitive function. Nature Neuroscience, 6(7), 692–695.

    Article  PubMed  Google Scholar 

  • Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F., & Evans, A. C. (1998). Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proceedings of the National Academy of Sciences of the USA, 95(6), 3172–3177.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank all of the participants who kindly took part in this study. This work was supported by the Wellcome Trust to TDG (WT 061136 MA) and core funding from Psychology, Heriot-Watt University to MES.

Author contributions

All authors were involved with the design of the study. MG developed the auditory tests and prepared the auditory data. MES collected and analysed the data. MG performed the bootstrap analysis. All authors discussed the results and implications and edited the manuscript at all stages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary E. Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, M.E., Griffiths, T.D. & Grube, M. Autistic Traits and Enhanced Perceptual Representation of Pitch and Time. J Autism Dev Disord 48, 1350–1358 (2018). https://doi.org/10.1007/s10803-015-2517-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-015-2517-3

Keywords

Navigation