Advertisement

Journal of Autism and Developmental Disorders

, Volume 45, Issue 11, pp 3764–3770 | Cite as

Brief Report: SETD2 Mutation in a Child with Autism, Intellectual Disabilities and Epilepsy

  • Heidi S. Lumish
  • Julia Wynn
  • Orrin Devinsky
  • Wendy K. ChungEmail author
Brief Report

Abstract

Whole exome sequencing (WES) has been utilized with increasing frequency to identify mutations underlying rare diseases. Autism spectrum disorders (ASD) and intellectual disability (ID) are genetically heterogeneous, and novel genes for these disorders are rapidly being identified, making these disorders ideal candidates for WES. Here we report a 17-year-old girl with ASD, developmental delay, ID, seizures, Chiari I malformation, macrocephaly, and short stature. She was found by WES to have a de novo c.2028delT (P677LfsX19) mutation in the SET domain-containing protein 2 (SETD2) gene, predicted to be gene-damaging. This case offers evidence for the potential the role of SETD2 in ASD and ID and provides further detail about the phenotypic manifestations of mutations in SETD2.

Keywords

Autism spectrum disorder Autism SETD2 Intellectual disability Whole exome sequencing 

Notes

Acknowledgments

We thank the patient and her family for their contribution. This work was supported in part by NIH Grant 5 T35 DK 93430-2.

Conflict of interest

No potential conflict of interest was disclosed.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study. Additional informed consent was obtained from all patients for whom identifying information is included in this article.

References

  1. Adegbola, A., Gao, H., Sommer, S., & Browning, M. (2008). A novel mutation in JARID1C/SMCX in a patient with autism spectrum disorder (ASD). American Journal of Medical Genetics Part A, 146A(4), 505–511. doi: 10.1002/ajmg.a.32142.CrossRefPubMedGoogle Scholar
  2. Bernier, R., Golzio, C., Xiong, B., Stessman, H. A., Coe, B. P., Penn, O., et al. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell, 158(2), 263–276. doi: 10.1016/j.cell.2014.06.017.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Carrozza, M. J., Li, B., Florens, L., Suganuma, T., Swanson, S. K., Lee, K. K., et al. (2005). Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell, 123(4), 581–592. doi: 10.1016/j.cell.2005.10.023.CrossRefPubMedGoogle Scholar
  4. Carvalho, S., Raposo, A. C., Martins, F. B., Grosso, A. R., Sridhara, S. C., Rino, J., et al. (2013). Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucleic Acids Research, 41(5), 2881–2893. doi: 10.1093/nar/gks1472.PubMedCentralCrossRefPubMedGoogle Scholar
  5. De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515(7526), 209–215. doi: 10.1038/nature13772.PubMedCentralCrossRefPubMedGoogle Scholar
  6. DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., et al. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics, 43(5), 491–498. doi: 10.1038/ng.806.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Fischbach, G. D., & Lord, C. (2010). The Simons Simplex Collection: A resource for identification of autism genetic risk factors. Neuron, 68(2), 192–195. doi: 10.1016/j.neuron.2010.10.006.CrossRefPubMedGoogle Scholar
  8. Greer, E. L., & Shi, Y. (2012). Histone methylation: A dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 13(5), 343–357. doi: 10.1038/nrg3173.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Hoyer, J., Ekici, A. B., Endele, S., Popp, B., Zweier, C., Wiesener, A., et al. (2012). Haploinsufficiency of ARID1B, a member of the SWI/SNF-a chromatin-remodeling complex, is a frequent cause of intellectual disability. American Journal of Human Genetics, 90(3), 565–572. doi: 10.1016/j.ajhg.2012.02.007.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Iossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., et al. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515(7526), 216–221. doi: 10.1038/nature13908.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74(2), 285–299. doi: 10.1016/j.neuron.2012.04.009.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Keogh, M. C., Kurdistani, S. K., Morris, S. A., Ahn, S. H., Podolny, V., Collins, S. R., et al. (2005). Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell, 123(4), 593–605. doi: 10.1016/j.cell.2005.10.025.CrossRefPubMedGoogle Scholar
  13. Lasalle, J. M. (2013). Autism genes keep turning up chromatin. OA Autism, 1(2), 14.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25(14), 1754–1760. doi: 10.1093/bioinformatics/btp324.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. doi: 10.1093/bioinformatics/btp352.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Luco, R. F., Pan, Q., Tominaga, K., Blencowe, B. J., Pereira-Smith, O. M., & Misteli, T. (2010). Regulation of alternative splicing by histone modifications. Science, 327(5968), 996–1000. doi: 10.1126/science.1184208.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Luscan, A., Laurendeau, I., Malan, V., Francannet, C., Odent, S., Giuliano, F., et al. (2014). Mutations in SETD2 cause a novel overgrowth condition. Journal of Medical Genetics. doi: 10.1136/jmedgenet-2014-102402.PubMedGoogle Scholar
  18. Neale, B. M., Kou, Y., Liu, L., Ma’ayan, A., Samocha, K. E., Sabo, A., et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485(7397), 242–245. doi: 10.1038/nature11011.PubMedCentralCrossRefPubMedGoogle Scholar
  19. O’Roak, B. J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J. J., Girirajan, S., et al. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43(6), 585–589. doi: 10.1038/ng.835.PubMedCentralCrossRefPubMedGoogle Scholar
  20. O’Roak, B. J., Vives, L., Fu, W., Egertson, J. D., Stanaway, I. B., Phelps, I. G., et al. (2012a). Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders. Science, 338(6114), 1619–1622. doi: 10.1126/science.1227764.PubMedCentralCrossRefPubMedGoogle Scholar
  21. O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., et al. (2012b). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485(7397), 246–250. doi: 10.1038/nature10989.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., et al. (2010). Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466(7304), 368–372. doi: 10.1038/nature09146.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Ronan, J. L., Wu, W., & Crabtree, G. R. (2013). From neural development to cognition: Unexpected roles for chromatin. Nature Reviews Genetics, 14(5), 347–359. doi: 10.1038/nrg3413.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., et al. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70(5), 863–885. doi: 10.1016/j.neuron.2011.05.002.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485(7397), 237–241. doi: 10.1038/nature10945.PubMedCentralCrossRefPubMedGoogle Scholar
  26. Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316(5823), 445–449. doi: 10.1126/science.1138659.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Shen, E., Shulha, H., Weng, Z., & Akbarian, S. (2014). Regulation of histone H3K4 methylation in brain development and disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. doi: 10.1098/rstb.2013.0514.PubMedCentralGoogle Scholar
  28. Szatmari, P., Paterson, A. D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X. Q., et al. (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 39(3), 319–328. doi: 10.1038/ng1985.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Physicians and SurgeonsColumbia UniversityNew YorkUSA
  2. 2.Department of PediatricsColumbia UniversityNew YorkUSA
  3. 3.Department of Neurology, Psychiatry, and NeurosurgeryNYU Langone Medical CenterNew YorkUSA
  4. 4.Department of Pediatrics and MedicineColumbia UniversityNew YorkUSA

Personalised recommendations