Facial Structure Analysis Separates Autism Spectrum Disorders into Meaningful Clinical Subgroups

Abstract

Varied cluster analysis were applied to facial surface measurements from 62 prepubertal boys with essential autism to determine whether facial morphology constitutes viable biomarker for delineation of discrete Autism Spectrum Disorders (ASD) subgroups. Earlier study indicated utility of facial morphology for autism subgrouping (Aldridge et al. in Mol Autism 2(1):15, 2011). Geodesic distances between standardized facial landmarks were measured from three-dimensional stereo-photogrammetric images. Subjects were evaluated for autism-related symptoms, neurologic, cognitive, familial, and phenotypic variants. The most compact cluster is clinically characterized by severe ASD, significant cognitive impairment and language regression. This verifies utility of facially-based ASD subtypes and validates Aldridge et al.’s severe ASD subgroup, notwithstanding different techniques. It suggests that language regression may define a unique ASD subgroup with potential etiologic differences.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aldridge, K., George, I., Cole, K., Austin, J., Takahashi, T. N., Duan, Y., et al. (2011). Facial phenotypes in subgroups of pre-pubertal boys with autism spectrum disorders are correlated with clinical phenotypes. Molecular Autism, 2(1), 15.

    Article  PubMed Central  PubMed  Google Scholar 

  2. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: APA.

    Google Scholar 

  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.

    Google Scholar 

  4. Arbelaitz, O., Gurrutxaga, I., Muguerza, J., Pérez, J. M., & Perona, I. (2013). An extensive comparative study of cluster validity indices. Pattern Recognition, 46(1), 243–256.

    Article  Google Scholar 

  5. Baird, G., Charman, T., Pickles, A., Chandler, S., Loucas, T., Meldrum, D., et al. (2008). Regression, developmental trajectory and associated problems in disorders in the autism spectrum: The SNAP study. Journal of Autism Development Disorders, 38(10), 1827–1836.

    Article  Google Scholar 

  6. Bolshakova, N., & Azuaje, F. (2003). Cluster validation techniques for genome expression data. Signal Processing, 83(4), 825–833.

    Article  Google Scholar 

  7. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  8. Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Article  Google Scholar 

  9. Constantino, J. N., & Gruber, C. P. (2005). Social Responsiveness Scale. Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  10. Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(3), 131–156.

    Article  Google Scholar 

  11. Dudoit, S., & Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 3(7), 1–21.

    Article  Google Scholar 

  12. Eaves, L. C., Ho, H. H., & Eaves, D. M. (1994). Subtypes of autism by cluster analysis. Journal of Autism and Developmental Disorders, 24(1), 3–22.

    Article  PubMed  Google Scholar 

  13. Ewing, J. A. (1984). Detecting alcoholism: The CAGE questionnaire. JAMA: Journal of the American Medical Association, 252, 1905–1907.

    Article  PubMed  Google Scholar 

  14. Farkas, L. G. (1994). Anthropometry of the head and face in clinical practice. In L. G. Farkas (Ed.), Anthropometry of the head and face (2nd ed., pp. 71–77). New York: Raven Press.

    Google Scholar 

  15. Farkas, L. G., & Posnick, J. C. (1992). Growth and development of regional units in the head and face based on anthropometricmeasurements. The Cleft Palate-Craniofacial Journal, 29(4), 301–302.

    Article  PubMed  Google Scholar 

  16. Fraley, C., & Raftery, A. E. (2000). Model-based clustering, discriminant analysis, and density estimation. Journal of the American Statistical Association, 97, 611–631.

    Article  Google Scholar 

  17. García López, F., García Torres, M., Meliá Batista, B., Moreno Pérez, J. A., & Moreno-Vega, J. M. (2006). Solving feature subset selection problem by a parallel scatter search. European Journal of Operational Research, 169(2), 477–489.

    Article  Google Scholar 

  18. Gilani, S. Z., Shafait, F., & Mian, A. (2013). Biologically significant facial landmarks: How significant are they for gender classification? In IEEE international conference on digital image computing: Techniques and Applications (DICTA) (pp. 1–8).

  19. Gutlein, M., Frank, E., Hall, M., & Karwath, A. (2009). Large-scale attribute selection using wrappers. IEEE symposium on computational intelligence and data mining CIDM’09, 2009 (pp. 332–339).

  20. Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Intelligent Information Systems Journal, 17(2–3), 107–145.

    Article  Google Scholar 

  21. Hamza, A. B., & Krim, H. (2006, August). Geodesic matching of triangulated surfaces. IEEE Transactions on Image Processing, 15(8), 2249–2258.

  22. Han, J. C. (1990). Shortest paths on a polyhedron. Sixth annual symposium on Computational geometry, SCG’90, (pp. 360–369).

  23. Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society: Series C (Applied Statistics), 28(1), 100–108.

    Google Scholar 

  24. Jain, A. K. (2010). Data clustering: 50 Years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.

    Article  Google Scholar 

  25. Jain, A. K., Jianchang, M., & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer, 29(3), 31–44.

    Article  Google Scholar 

  26. Jones, L. A., & Campbell, J. M. (2010). Clinical characteristics associated with language regression for children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(1), 54–62.

    Article  PubMed  Google Scholar 

  27. Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New York: Wiley.

    Google Scholar 

  28. Kohonen, T. (1998). The Self-organizing maps. Neurocomputing, 21(1), 1–6.

    Article  Google Scholar 

  29. Kovács, F., Legány, C., & Babos, A. (2005). Cluster validity measurement techniques. 6th International symposium of hungarian researchers on computational intelligence.

  30. Lord, C., Petkova, E., Hus, V., Gan, W., Lu, F., Martin, D. M., et al. (2012). A multisite study of the clinical diagnosis of different autism spectrum disorders. Archives of General Psychiatry, 69(3), 306–313.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C, et al. (2000, June). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.

  32. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., et al. (1989). Autism diagnostic observation schedule: A standardized observation of communicative and social behavior. Journal Autism Development Disorder, 19, 185–212.

    Article  Google Scholar 

  33. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism Development Disorder, 24, 659–685.

    Article  Google Scholar 

  34. Miles, J. H. (2011). Autism subgroups from a medical genetics perspective. In Autism spectrum disorders (pp. 705–721). Oxford: Oxford University Press.

  35. Miles, J. H., Hadden, L. L., Takahashi, T. N., & Hillman, R. E. (2000). Head circumference is an independent clinical finding associated with autism. American Journal of Medical Genetics, 95(4), 339–350.

    Article  PubMed  Google Scholar 

  36. Miles, J. H., Takahashi, T. N., Haber, A., & Hadden, L. (2003). Autism families with a high incidence of alcoholism. Journal of Autism and Developmental Disorders, 33(4), 403–415.

    Article  PubMed  Google Scholar 

  37. Miles, J. H., Takahashi, T. N., Hong, J., Munden, N., Flournoy, N., Braddock, S. R., et al. (2008). Development and validation of a measure of dysmorphology: Useful for autism subgroup classification. American Journal of Medical Genetics Part A, 146A, 1101–1116.

    Article  PubMed  Google Scholar 

  38. Mitchell, J. S., Mount, D. M., & Papadimitriou, C. H. (1987). The discrete geodesic problem. SIAM Journal Computing, 16(4), 647–668.

    Article  Google Scholar 

  39. Quynh, D., He, Y., Xin, S.-Q., & Chen, Z. (2012). An intrinsic algorithm to compute geodesic distance fields on triangle meshes with holes, graphical models. Proceedings of Geometric Modeling and Processing GMP’12, 74(4), 209–220.

    Google Scholar 

  40. Rousseeuw, P. (1987). Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis. Computational and Applied Mathematics, 20, 53–65.

    Article  Google Scholar 

  41. Sasson, N. J., Lam, K. S., Parlier, M., Daniels, J. L., & Piven, J. (2013). Autism and the broad autism phenotype: Familial patterns and intergenerational transmission. Journal of Neurodevelopmental Disorders, 5(11).

  42. Sparrow, S., Balla, D., & Cicchetti, D. (1984). Vineland Adaptive Behavior Scales. Circle Pines, MN: American Guidance Service.

    Google Scholar 

  43. Stefanatos, G. A. (2008). Regression in autistic spectrum disorders. Neuropsychology Review, 18(4), 305–319.

    Article  PubMed  Google Scholar 

  44. Tibshirani, R., & Walther, G. (2005). Cluster validation by prediction strength. Journal of Computational and Graphical Statistics, 14(3), 511–528.

    Article  Google Scholar 

  45. Wade, J. L., Cox, N. B., Reeve, R. E., & Hull, M. (2014). Brief report: Impact of child problem behaviors and parental broad autism phenotype traits on substance use among parents of children with ASD. Journal of Autism and Developmental Disorders, 1–7.

  46. Wang, K., Wang, B., & Peng, L. (2009). CVAP: Validation for cluster analyses. Data Science Journal, 8, 88–93.

    Article  Google Scholar 

  47. Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). Los Altos, CA: Morgan Kaufmann.

    Google Scholar 

  48. Xin, S.-Q., Quynh, D., Ying, X., & He, Y. (2012). A global algorithm to compute defect-tolerant geodesic distance. In ACM SIGGRAPH ASIA 2012 Technical Briefs, pp. 1–23.

  49. Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.

    Article  PubMed  Google Scholar 

  50. Xu, L., Yan, P., & Chang, T. (1988). Best first strategy for feature selection. In Proceedings of ninth international conference on pattern recognition (pp. 706–708).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ye Duan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Obafemi-Ajayi, T., Miles, J.H., Takahashi, T.N. et al. Facial Structure Analysis Separates Autism Spectrum Disorders into Meaningful Clinical Subgroups. J Autism Dev Disord 45, 1302–1317 (2015). https://doi.org/10.1007/s10803-014-2290-8

Download citation

Keywords

  • Autism
  • Cluster analysis
  • Language regression
  • Facial phenotype
  • Biomarker
  • Outcome indicators