Skip to main content

‘Subtypes’ in the Presentation of Autistic Traits in the General Adult Population

Abstract

The present study examined the presentation of autistic traits in a large adult population sample (n = 2,343). Cluster analysis indicated two subgroups with clearly distinguishable trait profiles. One group (n = 1,059) reported greater social difficulties and lower detail orientation, while the second group (n = 1,284) reported lesser social difficulties and greater detail orientation. We also report a three-factor solution for the autism-spectrum quotient, with two, related, social-themed factors (Sociability and Mentalising) and a third non-social factor that varied independently (Detail Orientation). These results indicate that different profiles of autistic characteristics tend to occur in the adult nonclinical population. Research into nonclinical variance in autistic features may benefit by considering social- and detail-related trait domains independently.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR (4th ed.). Washington, DC: American Psychiatric Association.

    Google Scholar 

  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). Arlington, VA: American Psychiatric Association.

    Book  Google Scholar 

  3. Austin, E. J. (2005). Personality correlates of the broader autism phenotype as assessed by the Autism Spectrum Quotient (AQ). Personality and Individual Differences, 38, 451–460.

    Article  Google Scholar 

  4. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5–17.

    Article  PubMed  Google Scholar 

  5. Bayliss, A. P., & Tipper, S. P. (2005). Gaze and arrow cueing of attention reveals individual differences along the autism spectrum as a function of target context. British Journal of Psychology, 96(Pt 1), 95–114. doi:10.1348/000712604X15626.

    Article  PubMed  Google Scholar 

  6. Berinsky, A. J., Huber, G. A., & Lenz, G. S. (2012). Evaluating online labor markets for experimental research: Amazon.com’s Mechanical Turk. Political Analysis, 20(3), 351–368.

    Article  Google Scholar 

  7. Beuker, K. T., Schjolberg, S., Lie, K. K., Donders, R., Lappenschaar, M., Swinkels, S. H., et al. (2013). The structure of autism spectrum disorder symptoms in the general population at 18 months. Journal of Autism and Developmental Disorders, 43(1), 45–56. doi:10.1007/s10803-012-1546-4.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bolton, P., Macdonald, H., Pickles, A., Rios, P., Goode, S., Crowson, M., et al. (1994). A case-control family history study of autism. Journal of Child Psychology and Psychiatry, 35(5), 877–900.

    Article  PubMed  Google Scholar 

  9. Broadbent, J., Galic, I., & Stokes, M. A. (2013). Validation of autism spectrum quotient adult version in an Australian sample. Autism Research and Treatment, 2013, 1–7. doi:10.1155/2013/984205.

    Article  Google Scholar 

  10. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechanical Turk: A new source of inexpensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3–5.

    Article  Google Scholar 

  11. Chakrabarti, B., Dudbridge, F., Kent, L., Wheelwright, S., Hill-Cawthorne, G., Allison, C., et al. (2009). Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Research, 2(3), 157–177. doi:10.1002/aur.80.

    Article  PubMed  Google Scholar 

  12. Chen, F. S., & Yoon, J. M. (2011). Brief report: broader autism phenotype predicts spontaneous reciprocity of direct gaze. Journal of Autism and Developmental Disorders, 41(8), 1131–1134. doi:10.1007/s10803-010-1136-2.

    Article  PubMed  Google Scholar 

  13. Constantino, J. N., & Todd, R. D. (2003). Autistic traits in the general population: A twin study. Archives of General Psychiatry, 60(5), 524–530. doi:10.1001/archpsyc.60.5.524.

    Article  PubMed  Google Scholar 

  14. Daunizeau, J., Adam, V., & Rigoux, L. (2014). VBA: A probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Computational Biology, 10(1), e1003441.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Donohue, S. E., Darling, E. F., & Mitroff, S. R. (2012). Links between multisensory processing and autism. Experimental Brain Research, 222(4), 377–387. doi:10.1007/s00221-012-3223-4.

    Article  PubMed  Google Scholar 

  16. Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage.

    Google Scholar 

  17. Freeth, M., Foulsham, T., & Kingstone, A. (2013a). What affects social attention? Social presence, eye contact and autistic traits. PLoS ONE, 8(1), e53286. doi:10.1371/journal.pone.0053286.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Freeth, M., Sheppard, E., Ramachandran, R., & Milne, E. (2013b). A cross-cultural comparison of autistic traits in the UK, India and Malaysia. Journal of Autism and Developmental Disorders, 43(11), 2569–2583. doi:10.1007/s10803-013-1808-9.

    Article  PubMed  Google Scholar 

  19. Grinter, E. J., Maybery, M. T., Van Beek, P. L., Pellicano, E., Badcock, J. C., & Badcock, D. R. (2009a). Global visual processing and self-rated autistic-like traits. Journal of Autism and Developmental Disorders, 39(9), 1278–1290. doi:10.1007/s10803-009-0740-5.

    Article  PubMed  Google Scholar 

  20. Grinter, E. J., Van Beek, P. L., Maybery, M. T., & Badcock, D. R. (2009b). Brief report: Visuospatial analysis and self-rated autistic-like traits. Journal of Autism and Developmental Disorders, 39(4), 670–677. doi:10.1007/s10803-008-0658-3.

    Article  PubMed  Google Scholar 

  21. Happé, F., & Ronald, A. (2008). The ‘fractionable autism triad’: A review of evidence from behavioural, genetic, cognitive and neural research. Neuropsychology Review, 18(4), 287–304. doi:10.1007/s11065-008-9076-8.

    Article  PubMed  Google Scholar 

  22. Happé, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9(10), 1218–1220. doi:10.1038/nn1770.

    Article  PubMed  Google Scholar 

  23. Hoekstra, R. A., Bartels, M., Cath, D. C., & Boomsma, D. I. (2008). Factor structure, reliability and criterion validity of the autism-spectrum quotient (AQ): A study in Dutch population and patient groups. Journal of Autism and Developmental Disorders, 38(8), 1555–1566. doi:10.1007/s10803-008-0538-x.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hurst, R. M., Mitchell, J. T., Kimbrel, N. A., Kwapil, T. K., & Nelson-Gray, R. O. (2007). Examination of the reliability and factor structure of the Autism Spectrum Quotient (AQ) in a non-clinical sample. Personality and Individual Differences, 43, 1938–1949.

    Article  Google Scholar 

  25. Jakab, A., Emri, M., Spisak, T., Szeman-Nagy, A., Beres, M., Kis, S. A., et al. (2013). Autistic traits in neurotypical adults: Correlates of graph theoretical functional network topology and white matter anisotropy patterns. PLoS ONE, 8(4), e60982. doi:10.1371/journal.pone.0060982.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kidd, D. C., & Castano, E. (2013). Reading literary fiction improves theory of mind. Science, 342(6156), 377–380. doi:10.1126/science.1239918.

    Article  PubMed  Google Scholar 

  27. Kloosterman, P. H., Keefer, K. V., Kelley, E. A., Summerfeldt, L. J., & Parker, J. D. A. (2011). Evaluation of the factor structure of the autism-spectrum quotient. Personality and Individual Differences, 50, 310–314.

    Article  Google Scholar 

  28. Lai, M. C., Lombardo, M. V., Chakrabarti, B., & Baron-Cohen, S. (2013). Subgrouping the autism “spectrum”: Reflections on DSM-5. PLoS Biology, 11(4), e1001544. doi:10.1371/journal.pbio.1001544.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Lau, W. Y., Gau, S. S., Chiu, Y. N., Wu, Y. Y., Chou, W. J., Liu, S. K., et al. (2013a). Psychometric properties of the Chinese version of the Autism Spectrum Quotient (AQ). Research in Developmental Disabilities, 34(1), 294–305. doi:10.1016/j.ridd.2012.08.005.

    Article  PubMed  Google Scholar 

  30. Lau, W. Y., Kelly, A. B., & Peterson, C. C. (2013b). Further evidence on the factorial structure of the Autism Spectrum Quotient (AQ) for adults with and without a clinical diagnosis of autism. Journal of Autism and Developmental Disorders, 43(12), 2807–2815. doi:10.1007/s10803-013-1827-6.

    Article  PubMed  Google Scholar 

  31. Ledesma, R. D., & Valero-Mora, P. (2007). Determining the number of factors to retain in EFA: An easy-to-use computer program for carrying out parallel analysis. Practical Assessment, Research & Evaluation, 12(2), 1–11.

    Google Scholar 

  32. Mandy, W. P., & Skuse, D. H. (2008). Research review: What is the association between the social-communication element of autism and repetitive interests, behaviours and activities? Journal of Child Psychology and Psychiatry, 49(8), 795–808. doi:10.1111/j.1469-7610.2008.01911.x.

    Article  PubMed  Google Scholar 

  33. Martinez, W. L., Martinez, A. R., & Solka, J. L. (2011). Exploratory data analysis with MATLAB. Chapman & Hall/CRC computer science and data analysis series (2nd ed.) pp. xix, 508 p., 508 p. of col). Boca Raton, Fla: CRC Press.

    Google Scholar 

  34. Murray, A. L., Booth, T., McKenzie, K., Kuenssberg, R., & O’Donnell, M. (2013). Are autistic traits measured equivalently in individuals with and without an Autism Spectrum Disorder? An invariance analysis of the Autism Spectrum Quotient Short Form. Journal of Autism and Developmental Disorders. doi:10.1007/s10803-013-1851-6.

    PubMed  Google Scholar 

  35. Nummenmaa, L., Engell, A. D., von dem Hagen, E., Henson, R. N., & Calder, A. J. (2012). Autism spectrum traits predict the neural response to eye gaze in typical individuals. Neuroimage, 59(4), 3356–3363. doi:10.1016/j.neuroimage.2011.10.075.

    Article  PubMed Central  PubMed  Google Scholar 

  36. O’Connor, B. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer’s MAP test. Behavior Research Methods, Instruments, & Computers, 32(3), 396–402.

    Article  Google Scholar 

  37. O’Connor, B. (2014). SPSS, SAS, and MATLAB programs for determining the number of components and factors. https://people.ok.ubc.ca/brioconn/nfactors/nfactors.html. Accessed 5 August 2014.

  38. Palmer, C. J., Paton, B., Hohwy, J., & Enticott, P. G. (2013). Movement under uncertainty: The effects of the rubber-hand illusion vary along the nonclinical autism spectrum. Neuropsychologia, 51(10), 1942–1951. doi:10.1016/j.neuropsychologia.2013.06.020.

    Article  PubMed  Google Scholar 

  39. Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running experiments on Amazon Mechanical Turk. Judgment and Decision Making, 5(5), 411–419.

    Google Scholar 

  40. Piven, J., Palmer, P., Jacobi, D., Childress, D., & Arndt, S. (1997). Broader autism phenotype: Evidence from a family history study of multiple-incidence autism families. American Journal of Psychiatry, 154(2), 185–190.

    Article  PubMed  Google Scholar 

  41. Posserud, M. B., Lundervold, A. J., & Gillberg, C. (2006). Autistic features in a total population of 7-9-year-old children assessed by the ASSQ (Autism Spectrum Screening Questionnaire). Journal of Child Psychology and Psychiatry, 47(2), 167–175. doi:10.1111/j.1469-7610.2005.01462.x.

    Article  PubMed  Google Scholar 

  42. Puzzo, I., Cooper, N. R., Vetter, P., & Russo, R. (2010). EEG activation differences in the pre-motor cortex and supplementary motor area between normal individuals with high and low traits of autism. Brain Research, 1342, 104–110. doi:10.1016/j.brainres.2010.04.060.

    Article  PubMed  Google Scholar 

  43. Quoidbach, J., Gilbert, D. T., & Wilson, T. D. (2013). The end of history illusion. Science, 339(6115), 96–98. doi:10.1126/science.1229294.

    Article  PubMed  Google Scholar 

  44. Ring, H., Woodbury-Smith, M., Watson, P., Wheelwright, S., & Baron-Cohen, S. (2008). Clinical heterogeneity among people with high functioning autism spectrum conditions: Evidence favouring a continuous severity gradient. Behavioral and Brain Functions, 4, 11. doi:10.1186/1744-9081-4-11.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Robinson, E. B., Koenen, K. C., McCormick, M. C., Munir, K., Hallett, V., Happé, F., et al. (2011). Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5 %, 2.5 %, and 1 %). Archives of General Psychiatry, 68(11), 1113–1121. doi:10.1001/archgenpsychiatry.2011.119.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Robinson, E. B., Koenen, K. C., McCormick, M. C., Munir, K., Hallett, V., Happé, F., et al. (2012). A multivariate twin study of autistic traits in 12-year-olds: Testing the fractionable autism triad hypothesis. Behavior Genetics, 42(2), 245–255. doi:10.1007/s10519-011-9500-3.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Ronald, A., Happé, F., Bolton, P., Butcher, L. M., Price, T. S., Wheelwright, S., et al. (2006a). Genetic heterogeneity between the three components of the autism spectrum: A twin study. Journal of the American Academy of Child and Adolescent Psychiatry, 45(6), 691–699. doi:10.1097/01.chi.0000215325.13058.9d.

    Article  PubMed  Google Scholar 

  48. Ronald, A., Happé, F., & Plomin, R. (2005). The genetic relationship between individual differences in social and nonsocial behaviours characteristic of autism. Developmental Science, 8(5), 444–458. doi:10.1111/j.1467-7687.2005.00433.x.

    Article  PubMed  Google Scholar 

  49. Ronald, A., Happé, F., & Plomin, R. (2006b). Genetic research into autism. Science, 311(5763), 952; (author reply) 952, doi:10.1126/science.311.5763.952a.

  50. Ronald, A., Larsson, H., Anckarsater, H., & Lichtenstein, P. (2011). A twin study of autism symptoms in Sweden. Molecular Psychiatry, 16(10), 1039–1047. doi:10.1038/mp.2010.82.

    Article  PubMed  Google Scholar 

  51. Shuster, J., Perry, A., Bebko, J., & Toplak, M. E. (2013). Review of factor analytic studies examining symptoms of Autism Spectrum Disorders. Journal of Autism and Developmental Disorders,. doi:10.1007/s10803-013-1854-3.

    Google Scholar 

  52. Stevens, J. (2009). Applied multivariate statistics for the social sciences (5th ed.). New York: Routledge.

    Google Scholar 

  53. Stewart, M. E., & Austin, E. J. (2009). The structure of the autism-spectrum quotient (AQ): Evidence from a student sample in Scotland. Personality and Individual Differences, 47, 224–228.

    Article  Google Scholar 

  54. Sutherland, A., & Crewther, D. P. (2010). Magnocellular visual evoked potential delay with high autism spectrum quotient yields a neural mechanism for altered perception. Brain, 133(Pt 7), 2089–2097. doi:10.1093/brain/awq122.

    Article  PubMed  Google Scholar 

  55. Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B, 63(2), 411–423.

    Article  Google Scholar 

  56. van Boxtel, J. J., & Lu, H. (2013). Impaired global, and compensatory local, biological motion processing in people with high levels of autistic traits. Frontiers in Psychology, 4, 209. doi:10.3389/fpsyg.2013.00209.

    PubMed Central  PubMed  Google Scholar 

  57. Walter, E., Dassonville, P., & Bochsler, T. M. (2009). A specific autistic trait that modulates visuospatial illusion susceptibility. Journal of Autism and Developmental Disorders, 39(2), 339–349. doi:10.1007/s10803-008-0630-2.

    Article  PubMed Central  PubMed  Google Scholar 

  58. World Health Organization. (2004). ICD-10: International statistical classification of diseases and related health problems 10th revision (2nd ed.). Geneva: World Health Organization.

    Google Scholar 

Download references

Acknowledgments

This work was supported by an Australian Research Council Discovery Grant (DP1311336). J.H. is supported by an Australian Research Council Future Fellowship (FT100100322). P.E. is supported by a National Health and Medical Research Council Clinical Research Fellowship (546244).

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Colin J. Palmer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palmer, C.J., Paton, B., Enticott, P.G. et al. ‘Subtypes’ in the Presentation of Autistic Traits in the General Adult Population. J Autism Dev Disord 45, 1291–1301 (2015). https://doi.org/10.1007/s10803-014-2289-1

Download citation

Keywords

  • Autistic traits
  • Autism-spectrum quotient
  • Cluster analysis
  • Subgroups
  • Factor analysis