Journal of Autism and Developmental Disorders

, Volume 45, Issue 1, pp 230–244 | Cite as

Neurophysiological Indices of Atypical Auditory Processing and Multisensory Integration are Associated with Symptom Severity in Autism

  • Alice B. Brandwein
  • John J. Foxe
  • John S. Butler
  • Hans-Peter Frey
  • Juliana C. Bates
  • Lisa H. Shulman
  • Sophie Molholm
Original Paper

Abstract

Atypical processing and integration of sensory inputs are hypothesized to play a role in unusual sensory reactions and social-cognitive deficits in autism spectrum disorder (ASD). Reports on the relationship between objective metrics of sensory processing and clinical symptoms, however, are surprisingly sparse. Here we examined the relationship between neurophysiological assays of sensory processing and (1) autism severity and (2) sensory sensitivities, in individuals with ASD aged 6–17. Multiple linear regression indicated significant associations between neural markers of auditory processing and multisensory integration, and autism severity. No such relationships were apparent for clinical measures of visual/auditory sensitivities. These data support that aberrant early sensory processing contributes to autism symptoms, and reveal the potential of electrophysiology to objectively subtype autism.

Keywords

Electrophysiology ERP ASD Multisensory integration ADOS Sensory Profile 

Supplementary material

10803_2014_2212_MOESM1_ESM.docx (12 kb)
Supplementary material 1 (DOCX 11 kb)
10803_2014_2212_MOESM2_ESM.doc (214 kb)
Supplementary material 2 (DOC 213 kb)

References

  1. Ameis, S. H., Fan, J., Rockel, C., Voineskos, A. N., Lobaugh, N. J., Soorya, L., et al. (2011). Impaired structural connectivity of socio-emotional circuits in autism spectrum disorders: A diffusion tensor imaging study. PLoS ONE, 6(11), e28044. doi:10.1371/journal.pone.0028044.PubMedCentralPubMedGoogle Scholar
  2. Asperger, H. (1944). Die ‘Autistischen Psychopathen’ im Kindesalter. Archiv für Psychiatrie und Nervenkrankheiten, 117, 76–136.Google Scholar
  3. Ayres, A. J. (1979). Sensory integration and the child. Los Angeles: Western Psychological Services.Google Scholar
  4. Ayres, A. J. (1989). The sensory integration and praxis tests. Los Angeles, CA: Western Psychological Services.Google Scholar
  5. Baranek, G. T., David, F. J., Poe, M. D., Stone, W. L., & Watson, L. R. (2006). Sensory Experiences Questionnaire: Discriminating sensory features in young children with autism, developmental delays, and typical development. Journal of Child Psychology and Psychiatry, 47(6), 591–601. doi:10.1111/j.1469-7610.2005.01546.x.PubMedGoogle Scholar
  6. Barutchu, A., Crewther, D. P., & Crewther, S. G. (2009). The race that precedes coactivation: Development of multisensory facilitation in children. Dev Sci, 12(3), 464–473. doi:10.1111/j.1467-7687.2008.00782.x.PubMedGoogle Scholar
  7. Ben-Sasson, A. (2011). Parents’ search for evidence-based practice: A personal story. Journal of Paediatrics and Child Health, 47(7), 415–418. doi:10.1111/j.1440-1754.2011.02141.x.PubMedGoogle Scholar
  8. Ben-Sasson, A., Cermak, S. A., Orsmond, G. I., Tager-Flusberg, H., Kadlec, M. B., & Carter, A. S. (2008). Sensory clusters of toddlers with autism spectrum disorders: Differences in affective symptoms. Journal of Child Psychology and Psychiatry, 49(8), 817–825. doi:10.1111/j.1469-7610.2008.01899.x.PubMedGoogle Scholar
  9. Ben-Sasson, A., Hen, L., Fluss, R., Cermack, S., Engel-Yeger, B., & Gal, E. (2009). A meta-analysis of sensory modulation symptoms in Individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39, 1–11.PubMedGoogle Scholar
  10. Ben-Sasson, A., Soto, T. W., Martinez-Pedraza, F., & Carter, A. S. (2013). Early sensory over-responsivity in toddlers with autism spectrum disorders as a predictor of family impairment and parenting stress. Journal of Child Psychology and Psychiatry, 54(8), 846–853. doi:10.1111/jcpp.12035.PubMedCentralPubMedGoogle Scholar
  11. Boddaert, N., Chabane, N., Belin, P., Bourgeois, M., Royer, V., Barthelemy, C., et al. (2004). Perception of complex sounds in autism: Abnormal auditory cortical processing in children. American Journal of Psychiatry, 161(11), 2117–2120. doi:10.1176/appi.ajp.161.11.2117.PubMedGoogle Scholar
  12. Brandwein, A. B., Foxe, J. J., Butler, J. S., Russo, N. N., Altschuler, T. S., Gomes, H., et al. (2013). The development of multisensory integration in high-functioning autism: High-density electrical mapping and psychophysical measures reveal impairments in the processing of audiovisual inputs. Cerebral Cortex, 23(6), 1329–1341. doi:10.1093/cercor/bhs109.PubMedCentralPubMedGoogle Scholar
  13. Brandwein, A. B., Foxe, J. J., Russo, N. N., Altschuler, T. S., Gomes, H., & Molholm, S. (2011). The development of audiovisual multisensory integration across childhood and early adolescence: A high-density electrical mapping study. Cerebral Cortex, 21(5), 1042–1055.PubMedCentralPubMedGoogle Scholar
  14. Brock, J., Brown, C. C., & Boucher, J. (2002). The temporal binding deficit hypothesis of autism. Developmental and Psychopathology, 14, 209–224.Google Scholar
  15. Bruneau, N., Roux, S., Adrien, J., & Barthelemy, C. (1999). Auditory associative cortex dysfunction in children with autism: Evidence from late auditory evoked potentials (N1 wave ± T complex). Clinical Neurophysiology, 110, 1927–1934.PubMedGoogle Scholar
  16. Campbell, D. B., Warren, D., Sutcliffe, J. S., Lee, E. B., & Levitt, P. (2010). Association of MET with social and communication phenotypes in individuals with autism spectrum disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B(2), 438–446. doi:10.1002/ajmg.b.30998.Google Scholar
  17. Cardinale, R. C., Shih, P., Fishman, I., Ford, L. M., & Muller, R. A. (2013). Pervasive rightward asymmetry shifts of functional networks in autism spectrum disorder. [Research support, N.I.H., extramural]. JAMA Psychiatry, 70(9), 975–982. doi:10.1001/jamapsychiatry.2013.382.PubMedCentralPubMedGoogle Scholar
  18. Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17(9), 692–695.PubMedGoogle Scholar
  19. Cascio, C. J., Moana-Filho, E. J., Guest, S., Nebel, M. B., Weisner, J., Baranek, G. T., et al. (2012). Perceptual and neural response to affective tactile texture stimulation in adults with autism spectrum disorders. Autism Research, 5(4), 231–244. doi:10.1002/aur.1224.PubMedCentralPubMedGoogle Scholar
  20. Ceponiene, R., Rinne, R., & Naatanen, R. (2002). Maturation of cortical sound processing as indexed by event-related potentials. Clinical Neurophysiology, 113, 870–882.PubMedGoogle Scholar
  21. Charman, T., Pickles, A., Simonoff, E., Chandler, S., Loucas, T., & Baird, G. (2011). IQ in children with autism spectrum disorders: Data from the Special Needs and Autism Project (SNAP). Psychological Medicine, 41(3), 619–627. doi:10.1017/S0033291710000991.PubMedGoogle Scholar
  22. Collignon, O., Charbonneau, G., Peters, F., Nassim, M., Lassonde, M., Lepore, F., et al. (2013). Reduced multisensory facilitation in persons with autism. [Research support, Non-U.S. Gov’t]. Cortex, 49(6), 1704–1710. doi:10.1016/j.cortex.2012.06.001.PubMedGoogle Scholar
  23. Courchesne, E., Lincoln, A. J., Kilman, B. A., & Galambos, R. (1985). Event-related brain potential correlates of the processing of novel visual and auditory information in autism. Journal of Autism and Developmental Disorders, 15(1), 55–76.PubMedGoogle Scholar
  24. Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: Local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225–230. doi:10.1016/j.conb.2005.03.001.PubMedGoogle Scholar
  25. Coutanche, M. N., Thompson-Schill, S. L., & Schultz, R. T. (2011). Multi-voxel pattern analysis of fMRI data predicts clinical symptom severity. Neuroimage, 57(1), 113–123. doi:10.1016/j.neuroimage.2011.04.016.PubMedCentralPubMedGoogle Scholar
  26. Crane, L., Goddard, L., & Pring, L. (2009). Sensory processing in adults with autism spectrum disorders. Autism, 13, 215–228.PubMedGoogle Scholar
  27. Dahlgren, S. O., & Gillberg, C. (1989). Symptoms in the first two years of life. A preliminary population study of infantile autism. European Archives of Psychiatry and Neurological Sciences, 238(3), 169–174.PubMedGoogle Scholar
  28. Di Russo, F., Martinez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping, 15(2), 95–111.PubMedGoogle Scholar
  29. Dunn, M., Gomes, H., & Gravel, J. (2008). Mismatch negativity in children with autism and typical development. Journal of Autism and Developmental Disorders, 38, 52–71.PubMedGoogle Scholar
  30. Edgar, J. C., Khan, S. Y., Blaskey, L., Chow, V. Y., Rey, M., Gaetz, W., et al. (2013). Neuromagnetic oscillations predict evoked-response latency delays and core language deficits in autism spectrum disorders. Journal of Autism and Developmental Disorders. doi:10.1007/s10803-013-1904-x.PubMedGoogle Scholar
  31. Elsabbagh, M., Holmboe, K., Gliga, T., Mercure, E., Hudry, K., Charman, T., et al. (2011). Social and attention factors during infancy and the later emergence of autism characteristics. Progress in Brain Research, 189, 195–207. doi:10.1016/B978-0-444-53884-0.00025-7.PubMedGoogle Scholar
  32. Engel-Yeger, B., Hardal-Nasser, R., & Gal, E. (2011). Sensory processing dysfunctions as expressed among children with different severities of intellectual developmental disabilities. Research in Developmental Disabilities, 32(5), 1770–1775.PubMedGoogle Scholar
  33. Ethofer, T., Anders, S., Erb, M., Droll, C., Royen, L., Saur, R., et al. (2006). Impact of voice on emotional judgment of faces: An event-related fMRI study. Human Brain Mapping, 27(9), 707–714. doi:10.1002/hbm.20212.PubMedGoogle Scholar
  34. Fan, J., Bernardi, S., Van Dam, N. T., Anagnostou, E., Gu, X., Martin, L., et al. (2012). Functional deficits of the attentional networks in autism. Brain and Behavior, 2(5), 647–660. doi:10.1002/brb3.90.PubMedCentralPubMedGoogle Scholar
  35. Ferri, R., Elia, M., Agarwal, N., Lanuzza, B., Musumeci, S., & Pennisi, G. (2003). The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects. Clinical Neurophysiology, 114, 1671–1680.PubMedGoogle Scholar
  36. Fishman, I., Keown, C. L., Lincoln, A. J., Pineda, J. A., & Muller, R. A. (2014). Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder. JAMA Psychiatry, 71(7), 751–760. doi:10.1001/jamapsychiatry.2014.83.PubMedGoogle Scholar
  37. Foss-Feig, J. H., Kwakye, L. D., Cascio, C. J., Burnette, C. P., Kadivar, H., Stone, W. L., et al. (2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203(2), 381–389. doi:10.1007/s00221-010-2240-4.PubMedCentralPubMedGoogle Scholar
  38. Foxe, J. J., Molholm, S., Del Bene, V. A., Frey, H. P., Russo, N. N., Blanco, D., et al. (2013). Severe multisensory speech integration deficits in high-functioning school-aged children with autism spectrum disorder (ASD) and their resolution during early adolescence. Cerebral Cortex. doi:10.1093/cercor/bht213.PubMedCentralGoogle Scholar
  39. Foxe, J. J., Morocz, I. A., Murray, M. M., Higgins, B. A., Javitt, D. C., & Schroeder, C. E. (2000). Multisensory auditory–somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Cognitive Brain Research, 10(1–2), 77–83.PubMedGoogle Scholar
  40. Foxe, J. J., & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans. A framework for defining “early” visual processing. [Research support, U.S. Gov’t, P.H.S.]. Experimental Brain Research, 142(1), 139–150. doi:10.1007/s00221-001-0906-7.PubMedGoogle Scholar
  41. Frey, H. P., Molholm, S., Lalor, E. C., Russo, N. N., & Foxe, J. J. (2013). Atypical cortical representation of peripheral visual space in children with an autism spectrum disorder. European Journal of Neuroscience, 38(1), 2125–2138. doi:10.1111/ejn.12243.PubMedGoogle Scholar
  42. Frith, U. (1996). Cognitive explanations of autism. Acta Paediatrica. Supplement, 416, 63–68.Google Scholar
  43. Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103–111. doi:10.1016/j.conb.2007.01.009.PubMedGoogle Scholar
  44. Giard, M. H., & Peronnet, F. (1999). Auditory–visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11(5), 473–490.PubMedGoogle Scholar
  45. Gomes, H., Dunn, M., Ritter, W., Kurtzberg, D., Brattson, A., Kreuzer, J. A., et al. (2001a). Spatiotemporal maturation of the central and lateral N1 components to tones. Developmental Brain Research, 129, 147–155.PubMedGoogle Scholar
  46. Gomes, H., Dunn, M., Ritter, W., Kurtzberg, D., Brattson, A., Kreuzer, J. A., et al. (2001b). Spatiotemporal maturation of the central and lateral N1 components to tones. Developmental Brain Research, 129(2), 147–155.PubMedGoogle Scholar
  47. Gotham, K., Pickles, A., & Lord, C. (2009). Standardizing ADOS scores for a measure of severity in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(5), 693–705. doi:10.1007/s10803-008-0674-3.PubMedCentralPubMedGoogle Scholar
  48. Gouze, K. R., Hopkins, J., LeBailly, S. A., & Lavigne, J. V. (2009). Re-examining the epidemiology of sensory regulation dysfunction and comorbid psychopathology. Journal of Abnormal Child Psychology, 37(8), 1077–1087. doi:10.1007/s10802-009-9333-1.PubMedGoogle Scholar
  49. Green, S. A., Rudie, J. D., Colich, N. L., Wood, J. J., Shirinyan, D., Hernandez, L., et al. (2013). Overreactive brain responses to sensory stimuli in youth with autism spectrum disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 52(11), 1158–1172. doi:10.1016/j.jaac.2013.08.004.PubMedGoogle Scholar
  50. Happé, F. (2005). The weak central coherence account of autism. In F. Volkmar, R. Paul, A. Klin, & J. Cohen (Eds.), Handbook of autism and pervasive developmental disorders, Vol. 1: Diagnosis, development, neurobiology, and behavior (3rd ed., pp. 640–649). New York: Wiley.Google Scholar
  51. Hermelin, B., & O’Connor, N. (1970). Psychological experiments with autistic children. Oxford: Pergamon Press.Google Scholar
  52. Howlin, P., Goode, S., Hutton, J., & Rutter, M. (2004). Adult outcome for children with autism. Journal of Child Psychology and Psychiatry, 45(2), 212–229.PubMedGoogle Scholar
  53. Hu, V. W. (2012). Subphenotype-dependent disease markers for diagnosis and personalized treatment of autism spectrum disorders. Disease Markers, 33(5), 277–288. doi:10.3233/DMA-2012-0916.PubMedCentralPubMedGoogle Scholar
  54. Hughes, H., Reuter-Lorenz, P. A., Nozawa, G., & Fendrich, R. (1994). Visual–auditory interactions in sensorimotor processing: Saccades versus manual responses. Journal of Experimental Psychology - Human Perception and Performance, 20(1), 131–153.PubMedGoogle Scholar
  55. Hutt, C., Hutt, S. J., Lee, D., & Ounsted, C. (1964). Arousal and childhood autism. Nature, 204, 909–919.Google Scholar
  56. Jemel, B., Mimeault, D., Saint-Amour, D., Hosein, A., & Mottron, L. (2010). VEP contrast sensitivity responses reveal reduced functional segregation of mid and high filters of visual channels in autism. J Vis, 10(6), 13. doi:10.1167/10.6.13.PubMedGoogle Scholar
  57. Jones, W., & Klin, A. (2009). Heterogeneity and homogeneity across the autism spectrum: The role of development. Journal of the American Academy of Child and Adolescent Psychiatry, 48(5), 471–473. doi:10.1097/CHI.0b013e31819f6c0d.PubMedGoogle Scholar
  58. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004a). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 1811–1821.PubMedGoogle Scholar
  59. Just, M. A., Cherkassy, V. L., Keller, T. A., & Minshew, N. J. (2004b). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity. Brain, 127, 1811–1821.PubMedGoogle Scholar
  60. Kanner, L. (1943). Autistic disturbances of affective contact. Nervous Child, 2, 217–250.Google Scholar
  61. Kemner, C., Verbaten, M. N., Cuperus, J. M., Camfferman, G., & van Engeland, H. (1995). Auditory event-related brain potentials in autistic children and three different control groups. Biological Psychiatry, 38(3), 150–165.PubMedGoogle Scholar
  62. Kern, J., Trivedi, M., Garver, C., Grannemann, B., Andrews, A., Salva, J., et al. (2006). The pattern of sensory processing abnormalities in autism. Autism, 10, 480–494.PubMedGoogle Scholar
  63. Kuhl, P. K., & Meltzoff, A. N. (1982). The bimodal perception of speech in infancy. Science, 218(4577), 1138–1141.PubMedGoogle Scholar
  64. Kwakye, L. D., Foss-Feig, J. H., Cascio, C. J., Stone, W. L., & Wallace, M. T. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4, 129. doi:10.3389/fnint.2010.00129.PubMedCentralPubMedGoogle Scholar
  65. Leavitt, V. M., Molholm, S., Ritter, W., Shpaner, M., & Foxe, J. J. (2007). Auditory processing in schizophrenia during the middle latency period (10–50 ms): High-density electrical mapping and source analysis reveal subcortical antecedents to early cortical deficits. Journal of Psychiatry and Neuroscience, 32(5), 339–353.PubMedCentralPubMedGoogle Scholar
  66. Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37(5), 894–910. doi:10.1007/s10803-006-0218-7.PubMedGoogle Scholar
  67. Lepisto, T., Kujala, T., Vanhala, R., Alku, P., Huotilainen, M., & Naatanen, R. (2005). The discrimination of and orienting to speech and non-speech sounds in children with autism. Brain Research, 1066(1–2), 147–157. doi:10.1016/j.brainres.2005.10.052.PubMedGoogle Scholar
  68. Lincoln, A. J., Courchesne, E., Harms, L., & Allen, M. (1995). Sensory modulation of auditory stimuli in children with autism and receptive developmental language disorder: Event-related brain potential evidence. Journal of Autism and Developmental Disorders, 25(5), 521–539.PubMedGoogle Scholar
  69. Lord, C., Luyster, R., Guthrie, W., & Pickles, A. (2012). Patterns of developmental trajectories in toddlers with autism spectrum disorder. Journal of Consulting and Clinical Psychology, 80(3), 477–489. doi:10.1037/a0027214.PubMedCentralPubMedGoogle Scholar
  70. Lord, C., Risi, S., Lambrecht, L., Cook, E. H, Jr, Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.PubMedGoogle Scholar
  71. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (1999). Autism diagnostic observation schedule. Los Angeles, CA: Western Psychological Services.Google Scholar
  72. Lucan, J. N., Foxe, J. J., Gomez-Ramirez, M., Sathian, K., & Molholm, S. (2010). Tactile shape discrimination recruits human lateral occipital complex during early perceptual processing. [Research support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 31(11), 1813–1821. doi:10.1002/hbm.20983.PubMedGoogle Scholar
  73. Magnee, M. J., de Gelder, B., van Engeland, H., & Kemner, C. (2011). Multisensory integration and attention in autism spectrum disorder: Evidence from event-related potentials. PLoS ONE, 6(8), e24196. doi:10.1371/journal.pone.0024196.PubMedCentralPubMedGoogle Scholar
  74. Mahajan, Y., & McArthur, G. (2012). Maturation of auditory event-related potentials across adolescence. Hearing Research, 294(1–2), 82–94. doi:10.1016/j.heares.2012.10.005.PubMedGoogle Scholar
  75. Mak-Fan, K. M., Morris, D., Vidal, J., Anagnostou, E., Roberts, W., & Taylor, M. J. (2013). White matter and development in children with an autism spectrum disorder. Autism, 17(5), 541–557. doi:10.1177/1362361312442596.PubMedGoogle Scholar
  76. Maravita, A., Bolognini, N., Bricolo, E., Marzi, C. A., & Savazzi, S. (2008). Is audiovisual integration subserved by the superior colliculus in humans? NeuroReport, 19(3), 271–275.PubMedGoogle Scholar
  77. Martineau, J., Garreau, B., Barthelemy, C., & Lelord, G. (1984). Evoked potentials and P300 during sensory conditioning in autistic children. Annals of the New York Academy of Sciences, 425, 362–369.PubMedGoogle Scholar
  78. McIntosh, D. N., Miller, L. J., Shyu, J., & Dunn, W. (1999a). Short Sensory Profile. San Antonio, TX: The Psychological Corporation.Google Scholar
  79. McIntosh, D. N., Miller, L. J., Shyu, V., & Hagerman, R. J. (1999b). Sensory-modulation disruption, electrodermal responses, and functional behaviors. Developmental Medicine and Child Neurology, 41(9), 608–615.PubMedGoogle Scholar
  80. McPartland, J. C., Wu, J., Bailey, C. A., Mayes, L. C., Schultz, R. T., & Klin, A. (2011). Atypical neural specialization for social percepts in autism spectrum disorder. Social Neuroscience, 6(5–6), 436–451. doi:10.1080/17470919.2011.586880.PubMedCentralPubMedGoogle Scholar
  81. Miller, J. (1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14(2), 247–279.PubMedGoogle Scholar
  82. Molholm, S., Ritter, W., Javitt, D. C., & Foxe, J. J. (2004). Multisensory visual–auditory object recognition in humans: A high-density electrical mapping study. Cerebral Cortex, 14(4), 452–465.PubMedGoogle Scholar
  83. Molholm, S., Ritter, W., Murray, M. M., Javitt, D. C., Schroeder, C. E., & Foxe, J. J. (2002). Multisensory auditory–visual interactions during early sensory processing in humans: A high density electrical mapping study. Cognitive Brain Research, 14, 115–128.PubMedGoogle Scholar
  84. Mongillo, E. A., Irwin, J. R., Whalen, D. H., Klaiman, C., Carter, A. S., & Schultz, R. T. (2008). Audiovisual processing in children with and without autism spectrum disorders. Journal of Autism and Developmental Disorders, 38(7), 1349–1358. doi:10.1007/s10803-007-0521-y.PubMedGoogle Scholar
  85. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006a). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43. doi:10.1007/s10803-005-0040-7.PubMedGoogle Scholar
  86. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. A. (2006b). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.PubMedGoogle Scholar
  87. Muller, R. A., Shih, P., Keehn, B., Deyoe, J. R., Leyden, K. M., & Shukla, D. K. (2011). Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cerebral Cortex, 21(10), 2233–2243. doi:10.1093/cercor/bhq296.PubMedCentralPubMedGoogle Scholar
  88. Murphy, J. W., Foxe, J. J., Peters, J. B., & Molholm, S. (2014). Susceptibility to distraction in autism spectrum disorder: Probing the integrity of oscillatory alpha-band suppression mechanisms. Autism Res. doi:10.1002/aur.1374.Google Scholar
  89. Murray, M. M., Molholm, S., Michel, C. M., Heslenfeld, D. J., Ritter, W., Javitt, D. C., et al. (2005). Grabbing your ear: Rapid auditory–somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cerebral Cortex, 15(7), 963–974.PubMedGoogle Scholar
  90. Naatanen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24(4), 375–425.PubMedGoogle Scholar
  91. Nair, A., Treiber, J. M., Shukla, D. K., Shih, P., & Muller, R. A. (2013). Impaired thalamocortical connectivity in autism spectrum disorder: A study of functional and anatomical connectivity. Brain, 136(Pt 6), 1942–1955. doi:10.1093/brain/awt079.PubMedCentralPubMedGoogle Scholar
  92. Neil, P. A., Chee-Ruiter, C., Scheier, C., Lewkowicz, D. L., & Shimojo, S. (2006). Development of multisensory spatial integration and perception in humans. Developmental Science, 9(5), 454–464.PubMedGoogle Scholar
  93. Oades, R. D., Walker, M. K., Geffen, L. B., & Stern, L. M. (1988). Event-related potentials in autistic and healthy children on an auditory choice reaction time task. International Journal of Psychophysiology, 6(1), 25–37.PubMedGoogle Scholar
  94. Ornitz, E. M. (1974). The modulation of sensory input and motor output in autistic children. Journal of Autism and Childhood Schizophrenia, 4, 197–215.PubMedGoogle Scholar
  95. Ornitz, E. M., Guthrie, D., & Farley, A. H. (1977). The early development of autistic children. Journal of Autism and Childhood Schizophrenia, 7, 207–229.Google Scholar
  96. Pang, E. W., & Taylor, M. J. (2000). Tracking the development of the N1 from age 3 to adulthood: An examination of speech and non-speech stimuli. Clinical Neurophysiology, 111(3), 388–397.PubMedGoogle Scholar
  97. Perrin, F., Pernier, J., Bertrand, O., & Echallier, J. F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.PubMedGoogle Scholar
  98. Perrin, F., Pernier, J., Bertrand, O., Giard, M. H., & Echallier, J. F. (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66(1), 75–81.PubMedGoogle Scholar
  99. Picton, T. W., Hillyard, S. A., Krausz, H. I., & Galambos, R. (1974). Human auditory evoked potentials. I. Evaluation of components. Electroencephalography and Clinical Neurophysiology, 36(2), 179–190.PubMedGoogle Scholar
  100. Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2000). Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clinical Neurophysiology, 111(2), 220–236.PubMedGoogle Scholar
  101. Roberts, T. P., Cannon, K. M., Tavabi, K., Blaskey, L., Khan, S. Y., Monroe, J. F., et al. (2011). Auditory magnetic mismatch field latency: A biomarker for language impairment in autism. Biological Psychiatry, 70(3), 263–269. doi:10.1016/j.biopsych.2011.01.015.PubMedCentralPubMedGoogle Scholar
  102. Roberts, T. P., Khan, S. Y., Rey, M., Monroe, J. F., Cannon, K., Blaskey, L., et al. (2010). MEG detection of delayed auditory evoked responses in autism spectrum disorders: Towards an imaging biomarker for autism. Autism Res, 3(1), 8–18. doi:10.1002/aur.111.PubMedCentralPubMedGoogle Scholar
  103. Rogers, S. J., & Ozonoff, S. (2005). Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, 46(12), 1255–1268. doi:10.1111/j.1469-7610.2005.01431.x.PubMedGoogle Scholar
  104. Ruhnau, P., Herrmann, B., Maess, B., & Schroger, E. (2011). Maturation of obligatory auditory responses and their neural sources: Evidence from EEG and MEG. Neuroimage, 58(2), 630–639. doi:10.1016/j.neuroimage.2011.06.050.PubMedGoogle Scholar
  105. Russo, N., Foxe, J. J., Brandwein, A. B., Altschuler, T., Gomes, H., & Molholm, S. (2010). Multisensory processing in children with autism: High-density electrical mapping of auditory–somatosensory integration. Autism Res, 3(5), 253–267. doi:10.1002/aur.152.PubMedGoogle Scholar
  106. Russo, N., Nicol, T., Trommer, B., Zecker, S., & Kraus, N. (2009). Brainstem transcription of speech is disrupted in children with autism spectrum disorders. Developmental Science, 12(4), 557–567.PubMedCentralPubMedGoogle Scholar
  107. Samson, F., Hyde, K. L., Bertone, A., Soulieres, I., Mendrek, A., Ahad, P., et al. (2011). Atypical processing of auditory temporal complexity in autistics. Neuropsychologia, 49(3), 546–555. doi:10.1016/j.neuropsychologia.2010.12.033.PubMedGoogle Scholar
  108. Schaaf, R. C., Benevides, T., Mailloux, Z., Faller, P., Hunt, J., van Hooydonk, E., et al. (2014). An intervention for sensory difficulties in children with autism: A randomized trial. Journal of Autism and Developmental Disorders, 44(7), 1493–1506. doi:10.1007/s10803-013-1983-8.PubMedCentralPubMedGoogle Scholar
  109. Schaaf, R. C., Toth-Cohen, S., Johnson, S. L., Outten, G., & Benevides, T. W. (2011). The everyday routines of families of children with autism: Examining the impact of sensory processing difficulties on the family. Autism, 15(3), 373–389.PubMedGoogle Scholar
  110. Scherg, M., Vajsar, J., & Picton, T. W. (1989). A source analysis of the late human auditory evoked potentials. Journal of Cognitive Neuroscience, 1(4), 336–355. doi:10.1162/jocn.1989.1.4.336.PubMedGoogle Scholar
  111. Schoen, S. A., Miller, L. J., & Green, K. E. (2008). Pilot study of the Sensory Over-Responsivity Scales: Assessment and inventory. American Journal of Occupational Therapy, 62(4), 393–406.PubMedGoogle Scholar
  112. Sell, N. K., Giarelli, E., Blum, N., Hanlon, A. L., & Levy, S. E. (2012). A comparison of autism spectrum disorder DSM-IV criteria and associated features among African American and white children in Philadelphia County. Disability and Health Journal, 5(1), 9–17.PubMedGoogle Scholar
  113. Stein, B., & Meredith, M. (1990). Multisensory integration. Neural and behavioral solutions for dealing with stimuli from different sensory modalities. Annals of the New York Academy of Sciences, 608, 51–65; discussion 65–70.Google Scholar
  114. Stevenson, R. A., Segers, M., Ferber, S., Barense, M. D., & Wallace, M. T. (2014a). The impact of multisensory integration deficits on speech perception in children with autism spectrum disorders. Frontiers in Psychology, 5, 379. doi:10.3389/fpsyg.2014.00379.PubMedCentralPubMedGoogle Scholar
  115. Stevenson, R. A., Siemann, J. K., Schneider, B. C., Eberly, H. E., Woynaroski, T. G., Camarata, S. M., et al. (2014b). Multisensory temporal integration in autism spectrum disorders. Journal of Neuroscience, 34(3), 691–697. doi:10.1523/JNEUROSCI.3615-13.2014.PubMedCentralPubMedGoogle Scholar
  116. Stoner, R., Chow, M. L., Boyle, M. P., Sunkin, S. M., Mouton, P. R., Roy, S., et al. (2014). Patches of disorganization in the neocortex of children with autism. New England Journal of Medicine, 370(13), 1209–1219. doi:10.1056/NEJMoa1307491.PubMedGoogle Scholar
  117. Supekar, K., Uddin, L. Q., Khouzam, A., Phillips, J., Gaillard, W. D., Kenworthy, L. E., et al. (2013). Brain hyperconnectivity in children with autism and its links to social deficits. Cell Reports, 5(3), 738–747. doi:10.1016/j.celrep.2013.10.001.PubMedCentralPubMedGoogle Scholar
  118. Teder-Salejarvi, W. A., McDonald, J. J., Di Russo, F., & Hillyard, S. A. (2002). An analysis of audio-visual crossmodal integration by means of event-related potential (ERP) recordings. Cognitive Brain Research, 14(1), 106–114.PubMedGoogle Scholar
  119. Teinonen, T., Aslin, R. N., Alku, P., & Csibra, G. (2008). Visual speech contributes to phonetic learning in 6-month-old infants. Cognition, 108(3), 850–855. doi:10.1016/j.cognition.2008.05.009.PubMedGoogle Scholar
  120. Tomchek, S. D., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. American Journal of Occupational Therapy, 61(2), 190–200.PubMedGoogle Scholar
  121. Tonnquist-Uhlen, I., Ponton, C. W., Eggermont, J. J., Kwong, B., & Don, M. (2003). Maturation of human central auditory system activity: The T-complex. Clinical Neurophysiology, 114(4), 685–701.PubMedGoogle Scholar
  122. Ulrich, R., Miller, J., & Schroter, H. (2007). Testing the race model inequality: An algorithm and computer programs. Behav Res Methods, 39(2), 291–302.PubMedGoogle Scholar
  123. van Eeghen, A. M., Pulsifer, M. B., Merker, V. L., Neumeyer, A. M., van Eeghen, E. E., Thibert, R. L., et al. (2013a). Understanding relationships between autism, intelligence, and epilepsy: A cross-disorder approach. Developmental Medicine and Child Neurology, 55(2), 146–153. doi:10.1111/dmcn.12044.PubMedGoogle Scholar
  124. van Eeghen, A. M., Pulsifer, M. B., Merker, V. L., Neumeyer, A. M., van Eeghen, E. E., Thibert, R. L., et al. (2013b). Understanding relationships between autism, intelligence, and epilepsy: A cross-disorder approach. Developmental Medicine and Child Neurology, 55(2), 146–153. doi:10.1111/dmcn.12044.PubMedGoogle Scholar
  125. Vlamings, P. H., Jonkman, L. M., van Daalen, E., van der Gaag, R. J., & Kemner, C. (2010). Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder. [Comparative study]. Biological Psychiatry, 68(12), 1107–1113. doi:10.1016/j.biopsych.2010.06.024.PubMedGoogle Scholar
  126. Volkmar, F. R., Cohen, D. J., Bregman, J. D., Hooks, M. Y., & Stevenson, J. M. (1989). An examination of social typologies in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 28(1), 82–86. doi:10.1097/00004583-198901000-00015.PubMedGoogle Scholar
  127. Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: Psychological Corporation.Google Scholar
  128. Wolf, J. M., Tanaka, J. W., Klaiman, C., Cockburn, J., Herlihy, L., Brown, C., et al. (2008). Specific impairment of face-processing abilities in children with autism spectrum disorder using the let’s face it! skills battery. Autism Res, 1(6), 329–340. doi:10.1002/aur.56.PubMedGoogle Scholar
  129. Woynaroski, T. G., Kwakye, L. D., Foss-Feig, J. H., Stevenson, R. A., Stone, W. L., & Wallace, M. T. (2013). Multisensory speech perception in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(12), 2891–2902. doi:10.1007/s10803-013-1836-5.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alice B. Brandwein
    • 1
    • 2
    • 3
  • John J. Foxe
    • 1
    • 2
    • 3
    • 4
  • John S. Butler
    • 1
    • 2
    • 6
  • Hans-Peter Frey
    • 1
    • 2
  • Juliana C. Bates
    • 1
  • Lisa H. Shulman
    • 5
  • Sophie Molholm
    • 1
    • 2
    • 3
  1. 1.Department of Pediatrics, The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children’s Evaluation and Rehabilitation Center (CERC)Albert Einstein College of MedicineBronxUSA
  2. 2.Department of Neuroscience, The Sheryl and Daniel R. Tishman Cognitive Neurophysiology Laboratory, Children’s Evaluation and Rehabilitation Center (CERC)Albert Einstein College of MedicineBronxUSA
  3. 3.The Graduate Center of the City University of New YorkNew YorkUSA
  4. 4.The Cognitive Neurophysiology LaboratoryThe Nathan S. Kline Institute for Psychiatric ResearchOrangeburgUSA
  5. 5.Department of Pediatrics, Children’s Evaluation and Rehabilitation Center (CERC)Albert Einstein College of MedicineBronxUSA
  6. 6.Trinity Centre for BioengineeringTrinity CollegeDublinIreland

Personalised recommendations