Journal of Autism and Developmental Disorders

, Volume 44, Issue 11, pp 2844–2850 | Cite as

Oblique Orientation Discrimination Thresholds Are Superior in Those with a High Level of Autistic Traits

  • Abigail Dickinson
  • Myles Jones
  • Elizabeth MilneEmail author
Original Paper


Enhanced low-level perception, although present in individuals with autism, is not seen in individuals with high, but non-clinical, levels of autistic traits (Brock et Percept Lond 40(6):739. doi: 10.1068/p6953, 2011). This is surprising, as many of the higher-level visual differences found in autism have been shown to correlate with autistic traits in non-clinical samples. Here we measure vertical–oblique and, more difficult, oblique–oblique orientation discrimination thresholds in a non-clinical sample. As predicted, oblique–oblique thresholds provided a more sensitive test of orientation discrimination, and were negatively related to autistic traits (N = 94, r = −.356, p < .0001). We conclude that individual differences in orientation discrimination and autistic traits are related, and suggest that both of these factors could be mediated by increased levels of the inhibitory neurotransmitter GABA.


Autistic traits Orientation discrimination Visual perception 


  1. Almeida, R. A., Dickinson, J. E., Maybery, M. T., Badcock, J. C., & Badcock, D. R. (2010). A new step towards understanding Embedded Figures Test performance in the autism spectrum: The radial frequency search task. Neuropsychologia, 48(2), 374–381. doi: 10.1016/j.neuropsychologia.2009.09.024.PubMedCrossRefGoogle Scholar
  2. Almeida, R. A., Dickinson, J. E., Maybery, M. T., Badcock, J. C., & Badcock, D. R. (2012). Visual search targeting either local or global perceptual processes differs as a function of autistic-like traits in the typically developing population. Journal of autism and developmental disorders, 1–15. doi: 10.1007/s10803-012-1669-7.
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
  4. Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: The” oblique effect” in man and animals. Psychological Bulletin, 78(4), 266. doi: 10.1037/h0033117.PubMedCrossRefGoogle Scholar
  5. Baranek, G. T., David, F. J., Poe, M. D., Stone, W. L., & Watson, L. R. (2006). Sensory experiences questionnaire: Discriminating sensory features in young children with autism, developmental delays, and typical development. Journal of Child Psychology and Psychiatry, 47(6), 591–601. doi: 10.1111/j.1469-7610.2005.01546.x.PubMedCrossRefGoogle Scholar
  6. Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, malesand females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 5–17. doi: 10.1023/A:1005653411471.PubMedCrossRefGoogle Scholar
  7. Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S. A., Engel-Yeger, B., & Gal, E. (2009). A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(1), 1–11. doi: 10.1007/s10803-008-0593-3.PubMedCrossRefGoogle Scholar
  8. Bertone, A., Mottron, L., Jelenic, P., & Faubert, J. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128(10), 2430–2441. doi: 10.1093/brain/awh561.PubMedCrossRefGoogle Scholar
  9. Betts, L. R., Sekuler, A. B., & Bennett, P. J. (2007). The effects of aging on orientation discrimination. Vision Research, 47(13), 1769–1780.PubMedCrossRefGoogle Scholar
  10. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. doi: 10.1163/156856897X00357.PubMedCrossRefGoogle Scholar
  11. Brock, J., Xu, J. Y., & Brooks, K. R. (2011). Individual differences in visual search: Relationship to autistic traits, discrimination thresholds, and speed of processing. Perception-London, 40(6), 739. doi: 10.1068/p6953.PubMedCrossRefGoogle Scholar
  12. Cascio, C., McGlone, F., Folger, S., Tannan, V., Baranek, G., Pelphrey, K. A., et al. (2008). Tactile perception in adults with autism: A multidimensional psychophysical study. Journal of Autism and Developmental Disorders, 38(1), 127–137. doi: 10.1007/s10803-007-0370-8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Constantino, J. N., & Todd, R. D. (2003). Autistic traits in the general population: A twin study. Archives of General Psychiatry, 60(5), 524. doi: 10.1001/archpsyc.60.5.524.PubMedCrossRefGoogle Scholar
  14. Dhossche, D., Applegate, H., Abraham, A., Maertens, P., Bland, L., Bencsath, A., et al. (2002). Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: Stimulus for a GABA hypothesis of autism. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 8(8), PR1-6.Google Scholar
  15. Dohn, A., Garza-Villarreal, E. A., Heaton, P., & Vuust, P. (2012). Do musicians with perfect pitch have more autism traits than musicians without perfect pitch? An empirical study. PloS One, 7(5). doi: 10.1371/journal.pone.0037961.
  16. Edden, R. A., Muthukumaraswamy, S. D., Freeman, T. C., & Singh, K. D. (2009). Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex. The Journal of Neuroscience, 29(50), 15721–15726. doi: 10.1523/jneurosci.4426-09.2009.PubMedCrossRefGoogle Scholar
  17. Gaetz, W., Bloy, L., Wang, D. J., Port, R. G., Blaskey, L., Levy, S. E., et al. (2013). GABA estimation in the Brains of Children on the Autism Spectrum: Measurement precision and regional cortical variation. NeuroImage,. doi: 10.1016/j.neuroimage.2013.05.068.PubMedCentralGoogle Scholar
  18. Gao, F., Edden, R. A., Li, M., Puts, N. A., Wang, G., Liu, C., et al. (2013). Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. Neuroimage, 78, 75–82. doi: 10.1016/j.neuroimage.2013.04.012.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Gregory, B. L., & Plaisted-Grant, K. C. (2013). The Autism-Spectrum Quotient and Visual Search: Shallow and Deep Autistic Endophenotypes. Journal of Autism and Developmental Disorders, 1–10. doi: 10.1007/s10803-013-1951-3.
  20. Grinter, E. J., Maybery, M. T., Van Beek, P., Pellicano, E., Badcock, J. C., & Badcock, D. R. (2009a). Global visual processing and self-rated autistic-like traits. Journal of Autism and Developmental Disorders, 39, 1278–1290. doi: 10.1007/s10803-009-0740-5.
  21. Grinter, E. J., Van Beek, P., Maybery, M. T., & Badcock, D. R. (2009b). Visuospatial analysis and self-rated autistic-like traits. Journal of Autism and Developmental Disorders, 39, 670–677.doi: 10.1007/s10803-008-0658-3.
  22. Haesen, B., Boets, B., & Wagemans, J. (2011). A review of behavioural and electrophysiological studies on auditory processing and speech perception in autism spectrum disorders. Research in Autism Spectrum Disorders, 5(2), 701–714. doi: 10.1016/j.rasd.2010.11.006.CrossRefGoogle Scholar
  23. Harada, M., Taki, M. M., Nose, A., Kubo, H., Mori, K., Nishitani, H., et al. (2011). Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. Journal of Autism and Developmental Disorders, 41(4), 447–454. doi: 10.1007/s10803-010-1065-0.PubMedCrossRefGoogle Scholar
  24. Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of physiology, 195(1), 215–243. Retrieved from
  25. Jones, R., Quigney, C., & Huws, J. (2003). First-hand accounts of sensory perceptual experiences in autism: A qualitative analysis. Journal of Intellectual and Developmental Disability, 28(2), 112–121. doi: 10.1080/1366825031000147058.CrossRefGoogle Scholar
  26. Kanner, L. (1943). Autistic disturbances of affective contact. Nervous child, 2(3), 217–250. Retrieved from
  27. Katzner, S., Busse, L., & Carandini, M. (2011). GABAA inhibition controls response gain in visual cortex. The Journal of Neuroscience, 31(16), 5931–5941. doi: 10.1523/jneurosci.5753-10.2011.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Leek, M. R. (2001). Adaptive procedures in psychophysical research. Perception & psychophysics, 63(8), 1279–1292. doi: 10.3758/BF03194543.
  29. Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37(5), 894–910. doi: 10.1007/s10803-006-0218-7.PubMedCrossRefGoogle Scholar
  30. Li, G., Yang, Y., Liang, Z., Xia, J., & Zhou, Y. (2008). GABA-mediated inhibition correlates with orientation selectivity in primary visual cortex of cat. Neuroscience, 155(3), 914–922. doi: 10.1016/j.neuroscience.2008.06.032.PubMedCrossRefGoogle Scholar
  31. Lockyear, L., & Rutter, M. (1970). A five-to fifteen-year follow-up study of infantile psychosis: IV. Patterns of cognitive ability. British Journal of Social and Clinical Psychology, 9(2), 152–163. doi: 10.1111/j.2044-8260.1970.tb00654.x.CrossRefGoogle Scholar
  32. Milne, E., Dunn, S. A., Freeth, M., & Rosas-Martinez, L. (2013). Visual search performance is predicted by the degree to which selective attention to features modulates the ERP between 350 and 600 ms. Neuropsychologia, 51(6), 1109–1118. doi: 10.1016/j.neuropsychologia.2013.03.002.PubMedCrossRefGoogle Scholar
  33. O’Riordan, M. A., Plaisted, K. C., Driver, J., & Baron-Cohen, S. (2001). Superior visual search in autism. Journal of Experimental Psychology: Human Perception and Performance, 27(3), 719. doi: 10.1037/0096-1523.27.3.719.PubMedGoogle Scholar
  34. Perreault, A., Gurnsey, R., Dawson, M., Mottron, M., & Bertone, A. (2011). Increased sensitivity to mirror symmetry in autism. PloS One, 6(4). doi: 10.1371/journal.pone.0019519.
  35. Plaisted, K., O’Riordan, M., & Baron-Cohen, S. (1998). Enhanced visual search for a conjunctive target in autism: A research note. Journal of Child Psychology and Psychiatry, 39(5), 777–783. doi: 10.1111/1469-7610.00376.PubMedCrossRefGoogle Scholar
  36. Puts, N. A., & Edden, R. A. (2012). In vivo magnetic resonance spectroscopy of GABA: A methodological review. Progress in Nuclear Magnetic Resonance Spectroscopy, 60, 29–41. doi: 10.1016/j.pnmrs.2011.06.001.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Robertson, A. E., & Simmons, D. R. (2012). The relationship between sensory sensitivity and autistic traits in the general population. Journal of Autism and Developmental Disorders, 1–10. doi: 10.1007/s10803-012-1608-7.
  38. Rojas, D. C., Singel, D., Steinmetz, S., Hepburn, S., & Brown, M. S. (2013). Decreased left perisylvian GABA concentration in children with autism and unaffected siblings. NeuroImage,. doi: 10.1016/j.neuroimage.2013.01.045.PubMedGoogle Scholar
  39. Shah, A., & Frith, U. (1983). An islet of ability in autistic children: A research note. Journal of Child Psychology and Psychiatry, 24(4), 613–620. doi: 10.1111/j.1469-7610.1983.tb00137.x.PubMedCrossRefGoogle Scholar
  40. Shah, A., & Frith, U. (1993). Why do autistic individuals show superior performance on the block design task? Journal of Child Psychology and Psychiatry, 34(8), 1351–1364. doi: 10.1111/j.1469-7610.1993.tb02095.x.PubMedCrossRefGoogle Scholar
  41. Sillito, A. M. (1975). The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. The Journal of Physiology, 250(2), 305–329. Retrieved from
  42. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision research, 49(22), 2705–2739. doi: 10.1016/j.visres.2009.08.005.
  43. Stewart, M. E., Watson, J., Allcock, A. J., & Yaqoob, T. (2009). Autistic traits predict performance on the block design. Autism, 13(2), 133–142. doi: 10.1177/1362361308098515.PubMedCrossRefGoogle Scholar
  44. Tibber, M. S., Guedes, A., & Shepherd, A. J. (2006). Orientation discrimination and contrast detection thresholds in migraine for cardinal and oblique angles. Investigative Ophthalmology & Visual Science, 47(12), 5599–5604. doi: 10.1167/iovs.06-0640.CrossRefGoogle Scholar
  45. Westheimer, G., & Beard, B. L. (1998). Orientation dependency for foveal line stimuli: Detection and intensity discrimination, resolution, orientation discrimination and vernier acuity. Vision Research, 38(8), 1097–1103. doi: 10.1016/S0042-6989(97)00248-4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Abigail Dickinson
    • 1
  • Myles Jones
    • 1
  • Elizabeth Milne
    • 1
    Email author
  1. 1.Department of PsychologyUniversity of SheffieldSheffieldUK

Personalised recommendations