Skip to main content
Log in

A Twin Study of Heritable and Shared Environmental Contributions to Autism

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

The present study examined genetic and shared environment contributions to quantitatively-measured autism symptoms and categorically-defined autism spectrum disorders (ASD). Participants included 568 twins from the Interactive Autism Network. Autism symptoms were obtained using the Social Communication Questionnaire and Social Responsiveness Scale. Categorically-defined ASD was based on clinical diagnoses. DeFries-Fulker and liability threshold models examined etiologic influences. Very high heritability was observed for extreme autism symptom levels (\( {\text{h}}_{g}^{2} = . 9 2{-} 1. 20 \)). Extreme levels of social and repetitive behavior symptoms were strongly influenced by common genetic factors. Heritability of categorically-defined ASD diagnosis was comparatively low (.21, 95 % CI 0.15–0.28). High heritability of extreme autism symptom levels confirms previous observations of strong genetic influences on autism. Future studies will require large, carefully ascertained family pedigrees and quantitative symptom measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: On the threshold of a new neurobiology. Nature Reviews Genetics, 9, 341–355. doi:10.1038/nrg2346.

    Article  PubMed Central  PubMed  Google Scholar 

  • American Psychiatric Association—DSM-5 Development (2011). 299.00 Autistic Disorder. In: American Psychiatric Association. http://www.dsm5.org/ProposedRevisions/Pages/proposedrevision.aspx?rid=94 Accessed February 01 2011.

  • Bailey, A., et al. (1995). Autism as a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.

    Article  PubMed  Google Scholar 

  • Benchek, P. H., & Morris, N. J. (2013). How meaningful are heritability estimates of liability? Human Genetics, 132, 1351–1360. doi:10.1007/s00439-013-1334-z.

    Article  PubMed  Google Scholar 

  • Bilder, D., Pinborough-Zimmerman, J., Miller, J., & McMahon, W. (2009). Prenatal, perinatal, and neonatal factors associated with autism spectrum disorders. Pediatrics, 123, 1293–1300. doi:10.1542/peds.2008-0927.

    Article  PubMed  Google Scholar 

  • Bortolus, R., Parazzini, F., Chatenoud, L., Benzi, G., Bianchi, M. M., & Marini, A. (1999). The epidemiology of multiple births. Hum Reprod Update, 5, 179–187.

    Article  PubMed  Google Scholar 

  • Bruder, C. E., et al. (2008). Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. American Journal of Human Genetics, 82, 763–771. doi:10.1016/j.ajhg.2007.12.011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention. (2012). Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, 14 Sites, United States, 2008. MMWR, 61, 1–19.

    Google Scholar 

  • Chandler, S., et al. (2007). Validation of the social communication questionnaire in a population cohort of children with autism spectrum disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 46, 1324–1332. doi:10.1097/chi.0b013e31812f7d8d.

    Article  PubMed  Google Scholar 

  • Chawarska, K., Klin, A., Paul, R., Macari, S., & Volkmar, F. (2009). A prospective study of toddlers with ASD: Short-term diagnostic and cognitive outcomes. Journal of Child Psychology and Psychiatry, 50, 1235–1245. doi:10.1111/j.1469-7610.2009.02101.x.

    Article  PubMed  Google Scholar 

  • Cherney, S. S., DeFries, J. C., & Fulker, D. W. (1992). Multiple regression analysis of twin data: A model-fitting approach. Behavior Genetics, 22, 489–497.

    Article  Google Scholar 

  • Constantino, J. N. (2009). How continua converge in nature: Cognition, social competence, and autistic syndromes. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 97–98. doi:10.1097/CHI.0b013e318193069e.

    Article  PubMed  Google Scholar 

  • Constantino, J. N., & Gruber, C. P. (2005). Social responsiveness scale: Manual. CA, Western Psychological Services: Los Angeles.

    Google Scholar 

  • Constantino, J. N., & Todd, R. D. (2000). Genetic structure of reciprocal social behavior. American Journal of Psychiatry, 157, 2043–2045.

    Article  PubMed  Google Scholar 

  • Constantino, J. N., & Todd, R. D. (2003). Autistic traits in the general population: A twin study. Archives of General Psychiatry, 60, 524–530.

    Article  PubMed  Google Scholar 

  • Constantino, J. N., & Todd, R. D. (2005). Intergenerational transmission of subthreshold autistic traits in the general population. Biological Psychiatry, 57, 655–660.

    Article  PubMed  Google Scholar 

  • Croen, L. A., Grether, J. K., Yoshida, C. K., Odouli, R., & Van de Water, J. (2005). Maternal autoimmune diseases, asthma and allergies, and childhood autism spectrum disorders: A case-control study. Archives of Pediatrics and Adolescent Medicine, 159, 151–157. doi:10.1001/archpedi.159.2.151.

    Article  PubMed  Google Scholar 

  • Davie, A. M. (1979). The ‘singles’ method for segregation analysis under incomplete ascertainment. Annals of Human Genetics, 42, 507–512.

    Article  PubMed  Google Scholar 

  • DeFries, J. C., & Fulker, D. W. (1985). Multiple regression analysis of twin data. Behavior Genetics, 15, 467–473.

    Article  PubMed  Google Scholar 

  • DeFries, J. C., & Fulker, D. W. (1988). Multiple regression analysis of twin data: Etiology of deviant scores versus individual differences. Acta Geneticae Medicae et Gemellologiae: Twin Research, 37, 205–216.

    PubMed  Google Scholar 

  • Folstein, S., & Rutter, M. (1977). Infantile autism: A genetic study of 21 twin pairs. Journal of Child Psychology and Psychiatry and Allied Disciplines, 18, 297–321.

    Article  Google Scholar 

  • Frazier, T. W., et al. (2010). Autism spectrum disorders as a qualitatively distinct category from typical behavior in a large, clinically ascertained sample. Assessment, 17, 308–320. doi:10.1177/1073191109356534.

    Article  PubMed  Google Scholar 

  • Frazier, T. W., et al. (2012). Validation of proposed DSM-5 criteria for autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 51(28–40), e3. doi:10.1016/j.jaac.2011.09.021.

    PubMed  Google Scholar 

  • Gardener, H., Spiegelman, D., & Buka, S. L. (2011). Perinatal and neonatal risk factors for autism: A comprehensive meta-analysis. Pediatrics, 128, 344–355. doi:10.1542/peds.2010-1036.

    Article  PubMed Central  PubMed  Google Scholar 

  • Glessner, J. T., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459, 569–573. doi:10.1038/nature07953.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gregory, S. G., et al. (2009). Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Medicine, 7, 62. doi:10.1186/1741-7015-7-62.

    Article  PubMed Central  PubMed  Google Scholar 

  • Grether, J. K., Anderson, M. C., Croen, L. A., Smith, D., & Windham, G. C. (2009). Risk of autism and increasing maternal and paternal age in a large north American population. American Journal of Epidemiology, 170, 1118–1126. doi:10.1093/aje/kwp247.

    Article  PubMed  Google Scholar 

  • Hallmayer, J., et al. (2011). Genetic heritability and shared environmental factors among twin pairs with autism. Archives of General Psychiatry, 68, 1095–1102. doi:10.1001/archgenpsychiatry.2011.76.

    Article  PubMed  Google Scholar 

  • Hoekstra, R. A., Bartels, M., Verweij, C. J., & Boomsma, D. I. (2007). Heritability of autistic traits in the general population. Archives of Pediatrics and Adolescent Medicine, 161, 372–377. doi:10.1001/archpedi.161.4.372.

    Article  PubMed  Google Scholar 

  • Holmes, A. S., Blaxill, M. F., & Haley, B. E. (2003). Reduced levels of mercury in first baby haircuts of autistic children. International Journal of Toxicology, 22, 277–285.

    Article  PubMed  Google Scholar 

  • Hu, V. W., Frank, B. C., Heine, S., Lee, N. H., & Quackenbush, J. (2006). Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes. BMC Genomics, 7, 118. doi:10.1186/1471-2164-7-118.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ingram, D. G., Takahashi, T. N., & Miles, J. H. (2008). Defining autism subgroups: A taxometric solution. Journal of Autism and Developmental Disorders, 38, 950–960. doi:10.1007/s10803-007-0469-y.

    Article  PubMed  Google Scholar 

  • Iossifov, I., et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74, 285–299. doi:10.1016/j.neuron.2012.04.009.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ip, P., Wong, V., Ho, M., Lee, J., & Wong, W. (2004). Mercury exposure in children with autistic spectrum disorder: Case-control study. Journal of Child Neurology, 19, 431–434.

    PubMed  Google Scholar 

  • Jiang, Y. H., et al. (2013). Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. American Journal of Human Genetics, 93, 249. doi:10.1016/j.ajhg.2013.06.012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kidd, K. K., & Cavalli-Sforza, L. L. (1973). An analysis of the genetics of schizophrenia. Social Biology, 20, 254–265.

    PubMed  Google Scholar 

  • Knopik, V. S., Alarcon, M., & DeFries, J. C. (1997). Comorbidity of mathematics and reading deficits: Evidence for a genetic etiology. Behavior Genetics, 27, 447–453.

    Article  PubMed  Google Scholar 

  • Lee, H., et al. (2010). Accuracy of phenotyping of autistic children based on internet implemented parent report. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 153B, 1119–1126. doi:10.1002/ajmg.b.31103.

    Google Scholar 

  • Levy, D., et al. (2011). Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron, 70, 886–897. doi:10.1016/j.neuron.2011.05.015.

    Article  PubMed  Google Scholar 

  • Lichtenstein, P., Carlstrom, E., Rastam, M., Gillberg, C., & Anckarsater, H. (2010). The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. American Journal of Psychiatry, 167, 1357–1363. doi:10.1176/appi.ajp.2010.10020223.

    Article  PubMed  Google Scholar 

  • Logan, J. A., et al. (2012). Heritability across the distribution: An application of quantile regression. Behavior Genetics, 42, 256–267. doi:10.1007/s10519-011-9497-7.

    Article  PubMed  Google Scholar 

  • Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., & Pickles, A. (2006). Autism from 2 to 9 years of age. Archives of General Psychiatry, 63, 694–701. doi:10.1001/archpsyc.63.6.694.

    Article  PubMed  Google Scholar 

  • Losh, M., et al. (2009). Neuropsychological profile of autism and the broad autism phenotype. Archives of General Psychiatry, 66, 518–526. doi:10.1001/archgenpsychiatry.2009.34.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lundstrom, S., et al. (2012). Autism spectrum disorders and autistic like traits: Similar etiology in the extreme end and the normal variation. Archives of General Psychiatry, 69, 46–52. doi:10.1001/archgenpsychiatry.2011.144.

    Article  PubMed  Google Scholar 

  • Mandy, W. P., Charman, T., & Skuse, D. H. (2012). Testing the construct validity of proposed criteria for DSM-5 autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 51, 41–50. doi:10.1016/j.jaac.2011.10.013.

    Article  PubMed  Google Scholar 

  • Martin, J. A., Hamilton, B. E., & Osterman, M. J. K. (2012). Three decades of twin births in the United States, 1980–2009. NCHS data brief., vol 80. Hyattsville, MD: National Center for Health Statistics.

    Google Scholar 

  • McCanlies, E. C., et al. (2012). Parental occupational exposures and autism spectrum disorder. Journal of Autism and Developmental Disorders, 42, 2323. doi:10.1007/s10803-012-1468-1.

    Article  PubMed  Google Scholar 

  • Moss, J., Magiati, I., Charman, T., & Howlin, P. (2008). Stability of the autism diagnostic interview-revised from pre-school to elementary school age in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 38, 1081–1091. doi:10.1007/s10803-007-0487-9.

    Article  PubMed  Google Scholar 

  • Neale, B. M., et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485, 242. doi:10.1038/nature11011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Newschaffer, C. J., Fallin, D., & Lee, N. L. (2002). Heritable and nonheritable risk factors for autism spectrum disorders. Epidemiologic Reviews, 24, 137–153.

    Article  PubMed  Google Scholar 

  • Newschaffer, C. J., et al. (2007). The epidemiology of autism spectrum disorders. Annual Review of Public Health, 28, 235–258. doi:10.1146/annurev.publhealth.28.021406.144007.

    Article  PubMed  Google Scholar 

  • O’Roak, B. J., et al. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43, 585–589. doi:10.1038/ng.835.

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Roak, B. J., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246. doi:10.1038/nature10989.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ozonoff, S., et al. (2011). Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics, 128, e488–e495. doi:10.1542/peds.2010-2825.

    PubMed Central  PubMed  Google Scholar 

  • Purcell, S., & Sham, P. C. (2003). A model-fitting implementation of the DeFries-Fulker model for selected twin data. Behavior Genetics, 33, 271–278.

    Article  PubMed  Google Scholar 

  • Reichenberg, A., et al. (2006). Advancing paternal age and autism. Archives of General Psychiatry, 63, 1026–1032. doi:10.1001/archpsyc.63.9.1026.

    Article  PubMed  Google Scholar 

  • Rice, C. (2009). Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006. MMWR Surveill Summ, 58, 1–20.

    Google Scholar 

  • Rietveld, M. J., van Der Valk, J. C., Bongers, I. L., Stroet, T. M., Slagboom, P. E., & Boomsma, D. I. (2000). Zygosity diagnosis in young twins by parental report. Twin Research, 3, 134–141.

    Article  PubMed  Google Scholar 

  • Rijsdijk, F. V., & Sham, P. C. (2002). Analytic approaches to twin data using structural equation models. Brief Bioinformatics, 3, 119–133.

    Article  PubMed  Google Scholar 

  • Ritvo, E. R., Freeman, B. J., Mason-Brothers, A., Mo, A., & Ritvo, A. M. (1985). Concordance for the syndrome of autism in 40 pairs of afflicted twins. American Journal of Psychiatry, 142, 74–77.

    PubMed  Google Scholar 

  • Robinson, E. B., et al. (2011). Evidence that autistic traits show the same etiology in the general population and at the quantitative extremes (5%, 2.5%, and 1%). Archives of General Psychiatry, 68, 1113–1121. doi:10.1001/archgenpsychiatry.2011.119.

    Article  PubMed Central  PubMed  Google Scholar 

  • Robinson, E. B., et al. (2012). A multivariate twin study of autistic traits in 12-year-olds: testing the fractionable autism triad hypothesis. Behavior Genetics, 42, 245–255. doi:10.1007/s10519-011-9500-3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ronald, A., Happe, F., & Plomin, R. (2005). The genetic relationship between individual differences in social and nonsocial behaviours characteristic of autism. Developmental Science, 8, 444–458. doi:10.1111/j.1467-7687.2005.00433.x.

    Article  PubMed  Google Scholar 

  • Ronald, A., Happe, F., Price, T. S., Baron-Cohen, S., Plomin, R., et al. (2006a). Phenotypic and genetic overlap between autistic traits at the extremes of the general population. Journal of the American Academy of Child and Adolescent Psychiatry, 45, 1206–1214. doi:10.1097/01.chi.0000230165.54117.41.

    Article  PubMed  Google Scholar 

  • Ronald, A., & Hoekstra, R. A. (2011). Autism spectrum disorders and autistic traits: A decade of new twin studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 156B, 255–274. doi:10.1002/ajmg.b.31159.

    Article  Google Scholar 

  • Ronald, A., Simonoff, E., Kuntsi, J., Asherton, P., & Plomin, R. (2008). Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. Journal of Child Psychology and Psychiatry, 49, 535–542.

    Article  PubMed  Google Scholar 

  • Ronald, A., et al. (2006b). Genetic heterogeneity between the three components of the autism spectrum: A twin study. Journal of the American Academy of Child and Adolescent Psychiatry, 45, 691–699.

    Article  PubMed  Google Scholar 

  • Rosenberg, R. E., Law, J. K., Yenokyan, G., McGready, J., Kaufmann, W. E., & Law, P. A. (2009). Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Archives of Pediatrics and Adolescent Medicine, 163, 907–914. doi:10.1001/archpediatrics.2009.98.

    Article  PubMed  Google Scholar 

  • Rutter, M., Bailey, A., & Lord, C. (2003). The social communication questionnaire manual. CA, Western Psychological Services: Los Angeles.

    Google Scholar 

  • Sanders, S. J., et al. (2011a). Multiple recurrent De Novo CNVs, including duplications of the 7q11.23 Williams syndrome region. Are strongly associated with autism. Neuron, 70, 863–885. doi:10.1016/j.neuron.2011.05.002.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanders, S. J., et al. (2011b). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70, 863–885. doi:10.1016/j.neuron.2011.05.002.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanders, S. J., et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237–241. doi:10.1038/nature10945.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sandin, S., Hultman, C. M., Kolevzon, A., Gross, R., MacCabe, J. H., & Reichenberg, A. (2012). Advancing maternal age is associated with increasing risk for autism: A review and meta-analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 51(477–486), e1. doi:10.1016/j.jaac.2012.02.018.

    PubMed  Google Scholar 

  • Schaaf, C. P., et al. (2011). Oligogenic heterozygosity in individuals with high-functioning autism spectrum disorders. Human Molecular Genetics, 20, 3366–3375. doi:10.1093/hmg/ddr243.

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidt, R. J., et al. (2012). Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. American Journal of Clinical Nutrition, 96, 80–89. doi:10.3945/ajcn.110.004416.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sebat, J., et al. (2007). Strong association of de novo copy number mutations with autism. Science, 316, 445–449.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shelton, J. F., Tancredi, D. J., & Hertz-Picciotto, I. (2010). Independent and dependent contributions of advanced maternal and paternal ages to autism risk. Autism Research, 3, 30–39. doi:10.1002/aur.116.

    Article  PubMed Central  PubMed  Google Scholar 

  • Skuse, D. H., Mandy, W. P., & Scourfield, J. (2005). Measuring autistic traits: heritability, reliability and validity of the social and communication disorders checklist. British Journal of Psychiatry, 187, 568–572. doi:10.1192/bjp.187.6.568.

    Article  PubMed  Google Scholar 

  • Spinath, F. M., Price, T. S., Dale, P. S., & Plomin, R. (2004). The genetic and environmental origins of language disability and ability. Child Development, 75, 445–454. doi:10.1111/j.1467-8624.2004.00685.x.

    Article  PubMed  Google Scholar 

  • Steffenburg, S., et al. (1989). A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. Journal of Child Psychology and Psychiatry, 30, 405–416.

    Article  PubMed  Google Scholar 

  • Stevenson, J. (1992). Evidence for a genetic etiology in hyperactivity in children. Behavior Genetics, 22, 337–344.

    Article  PubMed  Google Scholar 

  • Stevenson, J., Pennington, B. F., Gilger, J. W., DeFries, J. C., & Gillis, J. J. (1993). Hyperactivity and spelling disability: Testing for shared genetic aetiology. Journal of Child Psychology and Psychiatry, 34, 1137–1152.

    Article  PubMed  Google Scholar 

  • Stilp, R. L., Gernsbacher, M. A., Schweigert, E. K., Arneson, C. L., & Goldsmith, H. H. (2010). Genetic variance for autism screening items in an unselected sample of toddler-age twins. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 267–276.

    PubMed Central  PubMed  Google Scholar 

  • Szatmari, P., et al. (2012). Sex differences in repetitive stereotyped behaviors in autism: Implications for genetic liability. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 159B, 5–12. doi:10.1002/ajmg.b.31238.

    Article  PubMed  Google Scholar 

  • Taniai, H., Nishiyama, T., Miyachi, T., Imaeda, M., & Sumi, S. (2008). Genetic influences on the broad spectrum of autism: Study of proband-ascertained twins. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B, 844–849. doi:10.1002/ajmg.b.30740.

    Article  Google Scholar 

  • Vaags, A. K., et al. (2012). Rare deletions at the neurexin 3 locus in autism spectrum disorder. American Journal of Human Genetics, 90, 133–141. doi:10.1016/j.ajhg.2011.11.025.

    Article  PubMed Central  PubMed  Google Scholar 

  • Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., & Grether, J. K. (2006). Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco bay area. Environmental Health Perspectives, 114, 1438–1444.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zachor, D. A., & Ben Itzchak, E. (2011). Assisted reproductive technology and risk for autism spectrum disorder. Research in Developmental Disabilities, 32, 2950–2956. doi:10.1016/j.ridd.2011.05.007.

    Article  PubMed  Google Scholar 

  • Zhao, X., et al. (2007). A unified genetic theory for sporadic and inherited autism. Proceedings of the National Academy of Sciences, 104, 12831–12836.

    Article  Google Scholar 

Download references

Acknowledgments

The authors also wish to acknowledge the important contribution of the participants with autism, their siblings, and their families. This work was made possible by the Case Western Reserve University/Cleveland Clinic CTSA Grant Number UL1 RR024989 provided by the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health. The IAN registry is supported by funding from Autism Speaks and the Kennedy Krieger Institute. The views and opinions expressed in this article are those of the authors and should not be construed to represent the views of any of the sponsoring organizations, agencies, or US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Frazier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frazier, T.W., Thompson, L., Youngstrom, E.A. et al. A Twin Study of Heritable and Shared Environmental Contributions to Autism. J Autism Dev Disord 44, 2013–2025 (2014). https://doi.org/10.1007/s10803-014-2081-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-014-2081-2

Keywords

Navigation