Journal of Autism and Developmental Disorders

, Volume 44, Issue 8, pp 1833–1845 | Cite as

Downregulation of GABAA Receptor Protein Subunits α6, β2, δ, ε, γ2, θ, and ρ2 in Superior Frontal Cortex of Subjects with Autism

  • S. Hossein FatemiEmail author
  • Teri J. Reutiman
  • Timothy D. Folsom
  • Oyvind G. Rustan
  • Robert J. Rooney
  • Paul D. Thuras
Original Paper


We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABAA) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABAA and GABAB subunits and overall reduced protein expression for GABAA receptor alpha 6 (GABRα6), GABAA receptor beta 2 (GABRβ2), GABAA receptor delta (GABRδ), GABAA receptor epsilon (GABRε), GABAA receptor gamma 2 (GABRγ2), GABAA receptor theta (GABRθ), and GABAA receptor rho 2 (GABRρ2) in superior frontal cortex from subjects with autism. Our data demonstrate systematic changes in GABAA&B subunit expression in brains of subjects with autism, which may help explain the presence of cognitive abnormalities in subjects with autism.


Autism GABA Brain GABRα6 Frontal cortex GABRβ2 



Human tissue was obtained from the Eunice Kennedy Shriver National Institute for Child Health and Human Development (NICHD) Brain and Tissue Bank for Developmental Disorders, University of Maryland, Baltimore, MD (The role of the NICHD Brain and Tissue Bank is to distribute tissue, and therefore, cannot endorse the studies performed or the interpretation of results); the Harvard Brain Tissue Resource Center, which is supported in part by Public Health Service grant number R24 MH068855; the Brain Endowment Bank, which is funded in part by the National Parkinson Foundation, Inc., Miami, Florida; and the Autism Tissue Program and is gratefully acknowledged. Grant support by the Eunice Kennedy Shriver National Institute of Child Health and Human Development (#5R01HD052074-01A2 and 3R01HD052074-03S1) and the Minnesota Medical Foundation Alfred and Ingrid Lenz Harrison Autism Initiative Fund to SHF is gratefully acknowledged. Dr. Fatemi is currently supported by the Bernstein Endowed Professorship in Adult Psychiatry.

Conflict of interest

The authors declare that there is no conflict of interest.


  1. Abdolmaleky, H. M., Smith, C. L., Zhou, J. R., & Thiagalingam, S. (2009). Epigenetic alterations of the dopaminergic system in major psychiatric disorders. Pharmacogenomics in Drug Discovery and Development Methods in Molecular Biology, 448, 187–212.CrossRefGoogle Scholar
  2. Akbarian, S., & Huang, H. S. (2009). Epigenetic regulation in human brain-focus on histone lysine methylation. Biological Psychiatry, 65(3), 198–203.PubMedCentralPubMedCrossRefGoogle Scholar
  3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5) (5th ed.). Washington, DC: American Psychiatric Publishing.Google Scholar
  4. Amiet, C., Gourfinkel-An, I., Bouzamondo, A., Tordjman, S., Baulac, M., Lechat, P., et al. (2008). Epilepsy in autism is associated with intellectual disability and gender: Evidence from a meta-analysis. Biological Psychiatry, 64(7), 577–582.PubMedCrossRefGoogle Scholar
  5. Arias, B., Aguilera, M., Moya, J., Sáiz, P. A., Villa, H., Ibáñez, M. I., et al. (2012). The role of genetic variability in the SLC6A4, BDNF and GABRA6 genes in anxiety-related traits. Acta Psychiatrica Scandinavica, 125(3), 194–202.PubMedCrossRefGoogle Scholar
  6. Banerjee, A., García-Oscos, F., Roychowdhury, S., Galindo, L. C., Hall, S., Kilgard, M. P., et al. (2012). Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. International Journal of Neuropsychopharmacology, 11, 1–10.Google Scholar
  7. Blatt, G. J., Fitzgerald, C. M., Guptill, J. T., Booker, A. B., Kemper, T. L., & Bauman, M. L. (2001). Density and distribution of hippocampal neurotransmitter receptors in autism: An autoradiographic study. Journal of Autism and Developmental Disorders, 31(6), 537–544.PubMedCrossRefGoogle Scholar
  8. Bonnert, T. P., McKernan, R. M., Farrar, S., le Bourdellès, B., Heavens, R. P., Smith, D. W., et al. (1999). Theta, a novel gamma-aminobutyric acid type A receptor subunit. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9891–9896.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Brandon, N. J., Smart, T. G., & Moss, S. J. (2000). Regulation of GABAA Receptors by protein phosphorylation. In D. Martin & R. Olsen (Eds.), GABA in the nervous system: The view at fifty years (pp. 196–206). Philadelphia, PA: Lippincott, Williams and Wilkins.Google Scholar
  10. Canitano, R. (2013). Novel treatments in autism spectrum disorders: From synaptic dysfunction to experimental therapeutics. Behavioural Brain Research, 251, 125–132.PubMedCrossRefGoogle Scholar
  11. Coghlan, S., Horder, J., Inkster, B., Mendez, M. A., Murphy, D. G., & Nutt, D. J. (2012). GABA system dysfunction in autism and related disorders: From synapse to symptoms. Neuroscience and Biobehavioral Reviews, 36(9), 2044–2055.PubMedCrossRefGoogle Scholar
  12. Cutting, G. R., Curristin, S., Zoghbi, H., O’Hara, B., Seldin, M. F., & Uhl, G. R. (1992). Identification of a putative gamma-aminobutyric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6q14-q21 and mouse chromosome 4. Genomics, 12(4), 801–806.PubMedCrossRefGoogle Scholar
  13. D’Hulst, C., De Geest, N., Reeve, S. P., Van Dam, D., De Deyn, P. P., Hassan, B. A., et al. (2006). Decreased expression of the GABAA receptor in fragile X syndrome. Brain Research, 1121(1), 238–245.PubMedCrossRefGoogle Scholar
  14. Dibbens, L. M., Feng, H. J., Richards, M. C., Harkin, L. A., Hodgson, B. L., Scott, D., et al. (2004). GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Human Molecular Genetics, 13(13), 1315–1319.PubMedCrossRefGoogle Scholar
  15. El Idrissi, A., Ding, X. H., Scalia, J., Trenkner, E., Brown, W. T., & Dobkin, C. (2005). Decreased GABAA receptor expression in the seizure-prone fragile X mouse. Neuroscience Letters, 377(3), 141–146.PubMedCrossRefGoogle Scholar
  16. Emberger, W., Windpassinger, C., Petek, E., Kroisel, P. M., & Wagner, K. (2000). Assignment of the human GABAA receptor delta-subunit gene (GABRD) to chromosome band 1p36.3 distal to marker NIB1364 by radiation hybrid mapping. Cytogenetics and Cell Genetics, 89(3–4), 281–282.PubMedCrossRefGoogle Scholar
  17. Erickson, C. A., Wink, L. K., Ray, B., Early, M. C., Stiegelmeyer, E., Mathieu-Frasier, L., et al. (2013). Impact of acamprosate on behavior and brain-derived neurotrophic factor: an open-label study in youth with fragile X syndrome. Psychopharmacology, 228(1), 75–84.Google Scholar
  18. Fatemi, S. H., & Folsom, T. D. (2011). Dysregulation of fragile X mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of subjects with autism: A postmortem brain study. Molecular Autism, 2, 6–17.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Fatemi, S. H., Folsom, T. D., Kneeland, R. E., & Liesch, S. B. (2011). Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anatomical Record, 294(10), 1635–1645.CrossRefGoogle Scholar
  20. Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Thuras, P. D. (2009a). Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum, 8(1), 64–69.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Fatemi, S. H., Folsom, T. D., Rooney, R. J., & Thuras, P. D. (2013). mRNA and protein expression for novel GABAA receptors θ and ρ2 are altered in schizophrenia and mood disorders; relevance to FMRP-mGluR5 signaling pathway. Translational Psychiatry, 3, e27.Google Scholar
  22. Fatemi, S. H., Halt, A., Stary, J., Kanodia, R., Schulz, S. C., & Realmuto, G. (2002). Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in parietal and cerebellar cortices of autistic subjects. Biological Psychiatry, 52(8), 805–810.PubMedCrossRefGoogle Scholar
  23. Fatemi, S. H., Reutiman, T. J., Folsom, T. D., Rooney, R. J., Patel, D. H., & Thuras, P. D. (2010). mRNA and protein levels for GABAAalpha4, alpha5, beta1, and GABBR1 receptors are altered in brains from subjects with autism. Journal of Autism and Developmental Disorders, 40(6), 743–750.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Fatemi, S. H., Reutiman, T. J., Folsom, T. D., & Thuras, P. D. (2009b). GABA(A) receptor downregulation in brains of subjects with autism. Journal of Autism and Developmental Disorders, 39(2), 223–230.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Feng, Y., Kapornai, K., Kiss, E., Tamás, Z., Mayer, L., Baji, I., et al. (2010). Association of the GABRD gene and childhood-onset mood disorders. Genes, Brain, and Behavior, 9(6), 668–672.PubMedCentralPubMedGoogle Scholar
  26. Fombonne, E. (2006). Past and future perspectives on autism epidemiology. In S. O. Moldin & J. L. R. Rubenstein (Eds.), Understanding autism from basic neuroscience to treatment (pp. 25–48). Boca Raton, FL: CRC/Taylor and Francis.CrossRefGoogle Scholar
  27. Gantois, I., Vandescompele, J., Speleman, F., Reyniers, E., D’Hooge, R., Severijnen, L. A., et al. (2006). Expression profiling suggests underexpression of the GABAA receptor subunit delta in the fragile X knockout mouse model. Neurobiology of Disease, 21(2), 346–357.PubMedCrossRefGoogle Scholar
  28. Grayson, D. R., Chen, Y., Costa, E., Dong, E., Guidotti, A., Kundakovic, M., et al. (2006). The human reelin gene: Transcription factors (+), repressors (-) and the methlyation switch (±) in schizophrenia. Pharmacology and Therapeutics, 111(1), 272–286.PubMedCrossRefGoogle Scholar
  29. Greger, V., Knoll, J. H., Woolf, E., Glatt, K., Tyndale, R. F., DeLorey, T. M., et al. (1995). The gamma-aminobutyric acid receptor gamma 3 subunit gene (GABRG3) is tightly linked to the alpha 5 subunit gene (GABRA5) on human chromosome 15q11-q13 and is transcribed in the same orientation. Genomics, 26(2), 258–264.PubMedCrossRefGoogle Scholar
  30. Guptill, J. T., Booker, A. B., Gibbs, T. T., Kemper, T. L., Bauman, M. L., & Blatt, G. J. (2007). [3H]-flunitrazepam-labeled benzodiazepine binding sites in the hippocampal formation in autism: A multiple concentration autoradiographic study. Journal of Autism and Developmental Disorders, 37(5), 911–920.PubMedCrossRefGoogle Scholar
  31. Gurkan, C. K., & Hagerman, R. J. (2012). Targeted treatments in autism and fragile X syndrome. Research in Autism Spectrum Disorders, 6(4), 1311–1320.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hagerman, R., Lauterborn, J., Au, J., & Berry-Kravis, E. (2012). Fragile X syndrome and targeted treatment trials. Results and Problems in Cell Differentiation, 54, 297–335.PubMedCrossRefGoogle Scholar
  33. Hatton, D. D., Sideris, J., Skinner, M., Bailey, D. B., Jr, Roberts, J., & Mirrett, P. (2006). Autistic behavior in children with fragile x syndrome: Prevalence, stability, and the impact of FMRP. American Journal of Medical Genetics Part A, 140A(17), 1804–1813.PubMedCrossRefGoogle Scholar
  34. Hernandez, C. C., Gurba, K. N., Hu, N., & Macdonald, R. L. (2012). The GABRA6 mutation, R46W, associated with childhood absence epilepsy, alters 6β22 and 6β2 GABA(A) receptor channel gating and expression. Journal of Physiology, 589(Pt 23), 5857–5878.Google Scholar
  35. Hicks, A. A., Bailey, M. E. S., Riley, B. P., Kamphuis, W., Siciliano, M. J., Johnson, K. J., et al. (1994). Further evidence for clustering of human GABA-A receptor subunit genes: localization of the alpha-6-subunit gene (GABRA6) to distal chromosome 5q by linkage analysis. Genomics, 20, 285–288.PubMedCrossRefGoogle Scholar
  36. Hogart, A., Nagarajan, R. P., Patzel, K. A., Yasui, D. H., & Lasalle, J. M. (2007). 15q11-13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Human Molecular Genetics, 16(6), 691–703.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Hong, A., Zhang, A., Ke, Y., El Idrissi, A., & Shen, C. H. (2012). Downregulation of GABA(A) β subunits is transcriptionally controlled by Fmr1p. Journal of Molecular Neuroscience, 46(2), 272–275.PubMedCrossRefGoogle Scholar
  38. Ito, M., Ohmori, I., Nakahori, T., Ouchida, M., & Ohtsuka, Y. (2011). Mutation screen of GABRA1, GABRB2 and GABRG2 genes in Japanese patients with absence seizures. Neuroscience Letters, 383(3), 220–224.CrossRefGoogle Scholar
  39. Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., et al. (1998). GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature, 396(6712), 674–679.PubMedCrossRefGoogle Scholar
  40. Kelemenova, S., Schmidtova, E., Ficek, A., Celec, P., Kubranska, A., & Ostatnikova, D. (2010). Polymorphisms of candidate genes in Slovak autistic patients. Psychiatric Genetics, 20(4), 137–139.PubMedCrossRefGoogle Scholar
  41. Khan, Z., Ford, M. J., Cusanovich, D. A., Mitrano, A., Pritchard, J. K., & Gilad, Y. (2013). Primate transcript and protein expression levels evolve under compensatory selection pressures. Science, 342(6162), 1100–1104.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Korpi, E. R., Gründer, G., & Lüddens, H. (2002). Drug interactions at GABA(A) receptors. Progress in Neurobiology, 67(2), 113–159.PubMedCrossRefGoogle Scholar
  43. Kumari, R., Lakhan, R., Kalita, J., Garg, R. K., Misra, U. K., & Mittal, B. (2011). Potential role of GABAA receptor subunit; GABRA6, GABRB2 and GABRR2 gene polymorphisms in epilepsy susceptibility and pharmacotherapy in North Indian population. Clinica Chimica Acta, 412(13–14), 1244–1248.CrossRefGoogle Scholar
  44. Laurie, D. J., Seeburg, P. H., & Wisden, W. (1992). The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. Journal of Neuroscience, 12(3), 1063–1076.PubMedGoogle Scholar
  45. Lenzen, K. P., Heils, A., Lorenz, S., Hempelmann, A., & Sander, T. (2005). Association analysis of the Arg220His variation of the human gene encoding the GABA delta subunit with idiopathic generalized epilepsy. Epilepsy Research, 65(1–2), 53–57.PubMedCrossRefGoogle Scholar
  46. Ma, D. Q., Whitehead, P. L., Menold, M. M., Martin, E. R., Ashley-Koch, A. E., Mei, H., et al. (2005). Identification of significant association and gene–gene interaction of GABA receptor subunit genes in autism. American Journal of Human Genetics, 77(3), 377–388.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Maddox, L. O., Menold, M. M., Bass, M. P., Rogala, A. R., Pericak-Vance, M. A., Vance, J. M., et al. (1999). Autistic disorder and chromosome 15q11-q13: construction and analysis of a BAC/PAC contig. Genomics, 62(3), 325–331.PubMedCrossRefGoogle Scholar
  48. McCauley, J. L., Olson, L. M., Delahanty, R., Amin, T., Nurmi, E. L., Organ, E. L., et al. (2004). A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism. American Journal of Medical Genetics Part B. Neuropsychiatric Genetics, 131B(1), 51–59.CrossRefGoogle Scholar
  49. Menold, M. M., Shao, Y., Wolpert, C. M., Donnelly, S. L., Raiford, K. L., Martin, E. R., et al. (2001). Association analysis of chromosome 15 GABAA receptor subunit genes in autistic disorder. Journal of Neurogenetics, 15(3–4), 245–259.PubMedCrossRefGoogle Scholar
  50. Moragues, N., Ciofi, P., Lafon, P., Odessa, M. F., Tramu, G., & Garret, M. (2000). cDNA cloning and expression of a gamma-aminobutyric acid A receptor epsilon-subunit in rat brain. European Journal of Neuroscience, 12(12), 4318–4330.PubMedGoogle Scholar
  51. Oblak, A. L., Gibbs, T. T., & Blatt, G. J. (2010). Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. Journal of Neurochemistry, 114(5), 1414–1423.PubMedCentralPubMedGoogle Scholar
  52. Oblak, A. L., Gibbs, T. T., & Blatt, G. J. (2011). Reduced GABA(A) receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Research, 1380, 218–228.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Pham, X., Sun, C., Chen, X., van den Oord, E. J., Neale, M. C., Kendler, K. S., et al. (2009). Association study between GABA receptor genes and anxiety spectrum disorders. Depression and Anxiety, 26(11), 998–1003.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Pirker, S., Schwarzer, C., Czech, T., Baumgartner, C., Pockberger, H., Maier, H., et al. (2003). Increased expression of GABA(A) receptor beta-subunits in the hippocampus of patients with temporal lobe epilepsy. Journal of Neuropathology and Experimental Neurology, 62(8), 820–834.PubMedGoogle Scholar
  55. Pirker, S., Schwarzer, C., Wieselthaler, A., Sieghart, W., & Sperk, G. (2000). GABA(A) receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience, 101(4), 815–850.PubMedCrossRefGoogle Scholar
  56. Piton, A., Jouan, L., Rochefort, D., Dobrzeniecka, S., Lachapelle, K., Dion, P.A., et al. (2013). Analysis of the effects of rare variants on splicing identifies alterations in GABA(A) receptor genes in autism spectrum disorder individuals. European Journal of Human Genetics (in press).Google Scholar
  57. Purcell, A. E., Jeon, O. H., Zimmerman, A. W., Blue, M. E., & Pevsner, J. (2001). Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology, 57(9), 1618–1628.PubMedCrossRefGoogle Scholar
  58. Represa, A., & Ben-Ari, Y. (2005). Trophic actions of GABA on neuronal development. Trends in Neuroscience, 28(6), 278–283.CrossRefGoogle Scholar
  59. Russ, S. A., Larson, K., & Halfon, N. (2012). A national profile of childhood epilepsy and seizure disorder. Pediatrics, 129(2), 256–264.PubMedCrossRefGoogle Scholar
  60. Russek, S. J., & Farb, D. H. (1995). Mapping of the beta 2 subunit gene of the GABAA receptor (GABRB2) to human chromosome 5q34 using fluorescence in situ hybridization. Cellular and Molecular Biological Research, 41(6), 511–513.Google Scholar
  61. Rustan, O. G., Folsom, T. D., Yousefi, M. K., & Fatemi, S. H. (2013). Phosphorylated fragile X mental retardation protein at serine 499, is reduced in cerebellar vermis and superior frontal cortex of subjects with autism: Implications for fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling. Molecular Autism, 4(1), 41.PubMedCrossRefGoogle Scholar
  62. Sasaki, K., Matsuo, M., Maeda, T., Zaitsu, M., & Hamasaki, Y. (2009). Febrile seizures: Characterization of double-stranded RNA-induced gene expression. Pediatric Neurology, 41(2), 114–118.PubMedCrossRefGoogle Scholar
  63. Schwarzer, C., Berresheim, U., Pirker, S., Wieselthaler, A., Fuchs, K., Sieghart, W., et al. (2001). Distribution of the major gamma-aminobutyric acid(A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. Journal of Comparative Neurology, 433(4), 526–549.PubMedCrossRefGoogle Scholar
  64. Sokol, D. K., Maloney, B., Long, J. M., Ray, B., & Lahiri, D. K. (2011). Autism, Alzheimer disease, and fragile X: APP, FMRP, and mGluR5 are molecular links. Neurology, 76(15), 1344–1352.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Surén, P., Roth, C., Bresnahan, M., Haugen, M., Hornig, M., Hirtz, D., et al. (2013). Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. The Journal of the American Medical Association, 309(6), 570–577.CrossRefGoogle Scholar
  66. Tochigi, M., Kato, C., Koishi, S., Kawakubo, Y., Yamamoto, K., Matsumoto, H., et al. (2007). No evidence for significant association between GABA receptor genes in chromosome 15q11-q13 and autism in a Japanese population. Journal of Human Genetics, 52(12), 985–989.PubMedCrossRefGoogle Scholar
  67. Tucholski, J., Simmons, M. S., Pinner, A. L., Haroutunian, V., McCullumsmith, R. E., & Meador-Woodruff, J. H. (2013). Abnormal N-linked glycosylation of cortical AMPA receptor subunits in schizophrenia. Schizophrenia Research, 146(1–3), 177–183.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Vasquez, K., Kuizon, S., Junaid, M., & Idrissi, A. E. (2013). The effect of folic acid on GABA(A)-B 1 receptor subunit. Advances in Experimental Medicine and Biology, 775, 101–109.PubMedCrossRefGoogle Scholar
  69. Vogel, C. (2013). Protein expression under pressure. Science, 342(6162), 1052–1053.PubMedCrossRefGoogle Scholar
  70. Wang, L. W., Berry-Kravis, E., & Hagerman, R. J. (2010a). Fragile X: leading the way for targeted treatments in autism. Neurotherapeutics, 7(3), 264–274.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Wang, K. S., Liu, X. F., & Aragam, N. (2010b). A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophrenia Research, 124(1–3), 192–199.PubMedCrossRefGoogle Scholar
  72. Wilcox, A. S., Warrington, J. A., Gardiner, K., Berger, R., Whiting, P., Altherr, M. R., et al. (1992). Human chromosomal localization of genes encoding the gamma 1 and gamma 2 subunits of the gamma-aminobutyric acid receptor indicates that members of this gene family are often clustered in the genome. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5857–5861.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Wilke, K., Gaul, R., Klauck, S. M., & Poustka, A. (1997). A gene in human chromosome band Xq28 (GABRE) defines a putative new subunit class of the GABAA neurotransmitter receptor. Genomics, 45(1), 1–10.PubMedCrossRefGoogle Scholar
  74. Wisden, W., Laurie, D. J., Monyer, H., & Seeburg, P. H. (1992). The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. Journal of Neuroscience, 12(3), 1040–1062.PubMedGoogle Scholar
  75. Yip, J., Soghomonian, J. J., & Blatt, G. J. (2007). Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathologica, 113(5), 559–568.PubMedCrossRefGoogle Scholar
  76. Yip, J., Soghomonian, J. J., & Blatt, G. J. (2009). Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: An in situ hybridization study. Autism Research, 2(1), 50–59.PubMedCentralPubMedCrossRefGoogle Scholar
  77. Yoo, H. K., Chung, S., Hong, J. P., Kim, B. N., & Cho, S. C. (2009). Microsatellite marker in gamma-aminobutyric acid: A receptor beta 3 subunit gene and autism spectrum disorders in Korean trios. Yonsei Medical Journal, 50(2), 304–306.PubMedCentralPubMedCrossRefGoogle Scholar
  78. Zhang, C., Milunsky, J. M., Newton, S., Ko, J., Zhao, G., Maher, T. A., et al. (2009). A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export. Journal of Neuroscience, 29(35), 10843–10854.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Zhao, J., Bao, A. M., Qi, X. R., Kamphuis, W., Luchetti, S., Lou, J. S., et al. (2012). Gene expression of GABA and glutamate pathway markers in the prefrontal cortex of non-suicidal elderly depressed patients. Journal of Affective Disorders, 138(3), 494–502.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Hossein Fatemi
    • 1
    • 2
    • 3
    Email author
  • Teri J. Reutiman
    • 4
  • Timothy D. Folsom
    • 1
  • Oyvind G. Rustan
    • 5
  • Robert J. Rooney
    • 6
  • Paul D. Thuras
    • 7
  1. 1.Division of Neuroscience Research, Department of PsychiatryUniversity of Minnesota Medical SchoolMinneapolisUSA
  2. 2.Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Department of NeuroscienceUniversity of Minnesota Medical SchoolMinneapolisUSA
  4. 4.Regions HospitalSt. PaulUSA
  5. 5.Oslo University HospitalOsloNorway
  6. 6.Genome ExplorationsMemphisUSA
  7. 7.Department of Psychiatry (116A)Minneapolis Veterans Administration Medical CenterMinneapolisUSA

Personalised recommendations