Skip to main content
Log in

Eyeblink Conditioning: A Non-invasive Biomarker for Neurodevelopmental Disorders

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition, abnormalities in the cerebellum, a region of the brain highly involved in EBC, have been implicated in a number of neurodevelopmental disorders including autism spectrum disorders (ASDs). In the current paper, we review studies that have employed EBC as a biomarker for several neurodevelopmental disorders including fetal alcohol syndrome, Down syndrome, fragile X syndrome, attention deficit/hyperactivity disorder, dyslexia, specific language impairment, and schizophrenia. In addition, we discuss the benefits of using such a tool in individuals with ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adolphs, R., Sears, L., & Piven, J. (2001). Abnormal processing of social information from faces in autism. Journal of Cognitive Neuroscience, 13, 232–240.

    PubMed  Google Scholar 

  • Allin, M., et al. (2001). Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, 124, 60–66.

    PubMed  Google Scholar 

  • Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31, 137–145.

    PubMed  Google Scholar 

  • Andreasen, N. C., Paradiso, S., & O’Leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24, 203–218.

    PubMed  Google Scholar 

  • Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biological Psychiatry, 64, 81–88.

    PubMed Central  PubMed  Google Scholar 

  • Andreasen, N. C., et al. (1996). Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proceedings of the National Academy of Sciences of the United States of America, 93, 9985–9990.

    PubMed Central  PubMed  Google Scholar 

  • APA. (2000). Diagnostic and statistical manual of mental disorders IV-TR. Washington, DC: American Psychiatric Association.

    Google Scholar 

  • Aylward, G. (2002). Cognitive and neuropsychological outcomes: More than IQ scores. Mental Retardation and Developmental Disabilities Research Reviews, 8, 234–240.

    PubMed  Google Scholar 

  • Berquin, P. C., et al. (1998). Cerebellum in attention-deficit hyperactivity disorder: A morphometric MRI study. Neurology, 50, 1087–1093.

    PubMed  Google Scholar 

  • Berthier, N. E., & Moore, J. W. (1990). Activity of deep cerebellar nuclear cells during classical conditioning of nictitating membrane extension in rabbits. Experimental Brain Research, 63, 44–54.

    Google Scholar 

  • Bolbecker, A. R., Mehta, C. S., Edwards, C. R., Steinmetz, J. E., O’Donnell, B. F., & Hetrick, W. P. (2009). Eye-blink conditioning deficits indicate temporal processing abnormalities in schizophrenia. Schizophrenia Research, 111, 182–191.

    PubMed Central  PubMed  Google Scholar 

  • Bolbecker, A. R., et al. (2011). Exploration of cerebellar-dependent associative learning in schizophrenia: effects of varying and shifting interstimulus interval on eyeblink conditioning. Behavioral Neuroscience, 125, 687–698.

    PubMed Central  PubMed  Google Scholar 

  • Bolduc, M. E., et al. (2011). Spectrum of neurodevelopmental disabilities in children with cerebellar malformations. Developmental Medicine and Child Neurology, 53, 409–416.

    PubMed  Google Scholar 

  • Brown, S. M., et al. (2005). Eyeblink conditioning deficits indicate timing and cerebellar abnormalities in schizophrenia. Brain and Cognition, 58, 94–108.

    PubMed  Google Scholar 

  • Brunet, E., Sarfati, Y., Hardy-Bayle, M. C., & Decety, J. (2000). A PET investigation of the attribution of intentions with a nonverbal task. NeuroImage, 11, 157–166.

    PubMed  Google Scholar 

  • Calarge, C., Andreasen, N. C., & O’Leary, D. S. (2003). Visualizing how one brain understands another: A PET study of theory of mind. American Journal of Psychiatry, 160, 1954–1964.

    PubMed  Google Scholar 

  • Castellanos, F. X., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. Journal of the American Medical Association, 288, 1740–1748.

    PubMed  Google Scholar 

  • Catts, H. W. (2004). Language impairments and reading disabilities. In R. D. Kent (Ed.), The MIT Encyclopedia of communication disorders (pp. 329–331). Cambridge, MA: MIT.

    Google Scholar 

  • Chapman, R. S., & Hesketh, L. J. (2000). Behavioral phenotype of individuals with Down syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 6, 84–95.

    PubMed  Google Scholar 

  • Cheng, D. T., Disterhoft, J. F., Power, J. M., Ellis, D. A., & Desmond, J. E. (2008). Neural substrates underlying human delay and trace eyeblink conditioning. Proceedings of the National Academy of Sciences of the United States of America, 105, 8108–8113.

    PubMed Central  PubMed  Google Scholar 

  • Christian, K. M., & Thompson, R. F. (2003). Neural substrates of eyeblink conditioning: acquisition and retention. Learning & Memory, 11, 427–455.

    Google Scholar 

  • Claflin, D. I., Stanton, M. E., Herbert, J. S., Greer, J., & Eckerman, C. O. (2002). Effect of delay interval on classical eyeblink conditioning in 5-month-old human infants. Developmental Psychobiology, 41, 329–340.

    PubMed  Google Scholar 

  • Coffin, J. M., Baroody, S., Schneider, K., & O’Neill, J. (2005). Impaired cerebellar learning in children with prenatal alcohol exposure: A comparative study of eyeblink conditioning in children with ADHD and dyslexia. Cortex, 41, 389–398.

    PubMed  Google Scholar 

  • Courchesne, E. (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Current Opinion in Neurobiology, 7, 269–278.

    PubMed  Google Scholar 

  • Courchesne, E., Redcay, E., Morgan, J. T., & Kennedy, D. P. (2005). Autism at the beginning: Microstructural and growth abnormalities underlying the cognitive and behavioral phenotype of autism. Development and Psychopathology, 17, 577–597.

    PubMed  Google Scholar 

  • Courchesne, E., et al. (2007). Mapping early brain development in autism. Neuron, 56, 1–15.

    Google Scholar 

  • Cromwell, R., Palk, B., & Folshee, J. (1961). Studies in activity level: The relationships among eyelid conditioning, intelligence, activity level, and age. American Journal of Mental Deficiency, 65, 744–748.

    PubMed  Google Scholar 

  • D’Agata, F., et al. (2011). The recognition of facial emotions in spinocerebellar ataxia patients. Cerebellum, 10, 600–610.

    PubMed  Google Scholar 

  • Dawson, G., et al. (2010). Randomized, controlled trial of an intervention for toddlers with autism: The Early Start Denver Model. Pediatrics, 125, e17–e23.

    PubMed  Google Scholar 

  • Dawson, G., et al. (2012). Early behavioral intervention is associated with normalized brain activity in young children with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 51, 1150–1159.

    PubMed Central  PubMed  Google Scholar 

  • de Kieviet, J. F., Zoetebier, L., van Elburg, R. M., Vermeulen, R. J., & Oosterlaan, J. (2012). Brain development of very preterm and very low-birthweight children in childhood and adolescence: A meta-analysis. Developmental Medicine and Child Neurology, 54, 313–323.

    PubMed  Google Scholar 

  • De Vries, B. B., et al. (1997). Screening and diagnosis for the fragile X syndrome among the mentally retarded: an epidemiological and psychological survey. Collaborative Fragile X Study Group. American Journal of Human Genetics, 61, 660–667.

    PubMed Central  PubMed  Google Scholar 

  • DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208, 1174–1176.

    PubMed  Google Scholar 

  • Edwards, C. R., et al. (2008). Cerebellum volume and eyeblink conditioning in schizophrenia. Psychiatry Research: Neuroimaging, 162, 185–194.

    PubMed Central  PubMed  Google Scholar 

  • Eigsti, I. M., & Shapiro, T. (2003). A systems neuroscience approach to autism: Biological, cognitive, and clinical perspectives. Mental Retardation and Developmental Disabilities, 9, 205–215.

    Google Scholar 

  • Fifer, W. P., et al. (2010). Newborn infants learn during sleep. Proceedings of the National Academy of Sciences of the United States of America, 107, 10320–10323.

    PubMed Central  PubMed  Google Scholar 

  • Fitzgerald, H. E., & Brackbill, Y. (1976). Classical conditioning in infancy: Development and constraints. Psychological Bulletin, 83, 353–376.

    PubMed  Google Scholar 

  • Foroud, T., et al. (2012). Relation over time between facial measurements and cognitive outcomes in fetal alcohol-exposed children. Alcoholism: Clinical and Experimental Research, 36, 1634–1646.

    Google Scholar 

  • Forsyth, J. K., et al. (2012). Cerebellar-dependent eyeblink conditioning deficits in schizophrenia spectrum disorders. Schizophrenia Bulletin, 38, 751–759.

    PubMed Central  PubMed  Google Scholar 

  • Frings, M., et al. (2010). Timing of conditioned eyeblink responses is impaired in children with attention-deficit/hyperactivity disorder. Experimental Brain Research, 201, 167–176.

    PubMed  Google Scholar 

  • Garcia, K. S., & Mauk, M. D. (1998). Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses. Neuropharmacology, 37, 471–480.

    PubMed  Google Scholar 

  • Garcia, K. S., Steele, P. M., & Mauk, M. D. (1999). Cerebellar cortex lesions prevent acquisition of conditioned eyelid responses. Journal of Neuroscience, 19, 1940–10947.

    Google Scholar 

  • Gergely, G., & Watson, J. S. (1996). The social biofeedback theory of parental affect-mirroring: The development of emotional self-awareness and self-control in infancy. International Journal of Psychoanalysis, 77, 1181–1212.

    PubMed  Google Scholar 

  • Gerwig, M., Kolb, F. P., & Timmann, D. (2007). The involvement of the human cerebellum in eyeblink conditioning. Cerebellum, 6, 38–57.

    PubMed  Google Scholar 

  • Gleichgerrcht, E., Torralva, T., Rattazzi, A., Marenco, V., Roca, M., & Manes, F. (2012). Selective impairment of cognitive empathy for moral judgment in adults with high functioning autism. Social Cognitive and Affective Neuroscience, in press.

  • Gothelf, D., et al. (2008). Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Annals of Neurology, 63, 40–51. doi:10.1002/ana.21243.

    PubMed Central  PubMed  Google Scholar 

  • Green, J. T. (2004). The effects of ethanol on the developing cerebellum and eyeblink conditioning. Cerebellum, 3, 178–187.

  • Green, J. T., Rogers, R. F., Goodlett, C. R., & Steinmetz, J. E. (2000). Impairment in eyeblink conditioning in adult rats exposed to ethanol as neonates. Alcoholism, Clinical and Experimental Research, 24, 438–447.

    PubMed  Google Scholar 

  • Hagerman, R. J., & Hagerman, P. J. (2002). The fragile X premutation: Into the phenotypic fold. Current Opinion in Genetics & Development, 12, 278–283.

    Google Scholar 

  • Hammock, E. A., & Levitt, P. (2006). The discipline of neurobehavioral development: The emerging interface that builds processes and skills. Human Development, 49, 294–309.

    Google Scholar 

  • Hardiman, M. J., Ramnani, N., & Yeo, C. H. (1996). Reversible inactivations of the cerebellum with muscimol prevent the acquisition and extinction of conditioned nictitating membrane responses in the rabbit. Experimental Brain Research, 110, 235–247.

    PubMed  Google Scholar 

  • Hart, A. R., Whitby, E. W., Griffiths, P. D., & Smith, M. F. (2008). Magnetic resonance imaging and developmental outcome following preterm birth: Review of current evidence. Developmental Medicine and Child Neurology, 50, 655–663.

    PubMed  Google Scholar 

  • Herbert, J. S., Eckerman, C. O., Goldstein, R. F., & Stanton, M. E. (2004). Contrasts in infant classical eyeblink conditioning as a function of premature birth. Infancy, 5, 367–383.

    Google Scholar 

  • Herbert, J. S., Eckerman, C. O., & Stanton, M. E. (2003). The ontogeny of human learning in delay, long-delay, and trace eyeblink conditioning. Behavioral Neuroscience, 117, 1196–1210.

    PubMed  Google Scholar 

  • Hessl, D., Rivera, S. M., & Reiss, A. L. (2004). The neuroanatomy and neuroendocrinology of fragile x syndrome. Mental Retardation and Developmental Disabilities Research Review, 10, 17–24.

    Google Scholar 

  • Hill, E. L. (2001). Non-specific nature of specific language impairment: A review of the literature with regard to concomitant motor impairments. International Journal of Language and Communication Disorders, 36, 149–171.

    PubMed  Google Scholar 

  • Hinds, H. L., et al. (1993). Tissue specific expression of FMR-1 provides evidence for a functional role in fragile x syndrome. Nature Genetics, 3, 36–43. doi:10.1038/ng0193-36.

    PubMed  Google Scholar 

  • Hofer, E., Doby, D., Anderer, P., & Dantendorfer, K. (2001). Impaired conditional discrimination learning in schizophrenia. Schizophrenia Research, 51, 127–136.

    PubMed  Google Scholar 

  • Hoffman, H. S., Cohen, M. E., & DeVido, C. J. (1985). A comparison of classical eyelid conditioning in adults and infants. Infant Behavior and Development, 8, 247–254.

    Google Scholar 

  • Hoyme, H. E., et al. (2005). A practical clinical approach to diagnosis of fetal alcohol spectrum disorders: Clarification of the 1996 Institute of Medicine criteria. Pediatrics, 115, 39–47.

    PubMed  Google Scholar 

  • Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468, 187–193.

    PubMed  Google Scholar 

  • Ivkovich, D., Collins, K. L., Eckerman, C. O., Krasnegor, N. A., & Stanton, M. E. (1999). Classical delay eyeblink conditioning in 4- and 5-month-old human infants. Psychological Science, 10, 4–8.

    Google Scholar 

  • Ivkovich, D., Eckman, C. O., Krasnegor, N. A., & Stanton, M. E. (2000). Using eyeblink conditioning to assess neurocognitive development in human infants. In D. S. Woodruff-Pak, & J. E. Steinmetz (Eds.), Eyeblink classical conditioning: Volume 1 applications in humans (pp. 119–142). Norwell, MA: Kluwer Academic Publishers.

  • Jacobson, S. W., et al. (2008). Impaired eyeblink conditioning in children with fetal alcohol syndrome. Alcoholism, Clinical and Experimental Research, 32, 365–372.

    PubMed  Google Scholar 

  • Jacobson, S. W., et al. (2011). Impaired delay and trace eyeblink conditioning in school-age children with fetal alcohol syndrome. Alcoholism, Clinical and Experimental Research, 35, 1–15.

    Google Scholar 

  • Kaufmann, W. E., et al. (2004). Autism spectrum disorder in fragile X syndrome: Communication, social interaction, and specific behaviors. American Journal of Medical Genetics Part A, 129A, 225–234.

    PubMed  Google Scholar 

  • Kim, J. J., Clark, R. E., & Thompson, R. F. (1995). Hippocampectomy impairs the memory of recent, but not remotely, acquired trace eyeblink conditioned responses. Behavioral Neuroscience, 109, 195–203.

    PubMed  Google Scholar 

  • Klin, A., Lin, D. J., Gorrindo, P., Ramsay, G., & Jones, W. (2009). Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature, 459, 257–263.

    PubMed Central  PubMed  Google Scholar 

  • Koekkoek, S. K. E., et al. (2005). Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron, 47, 339–352.

    PubMed  Google Scholar 

  • Krain, A. L., & Castellanos, F. X. (2006). Brain development and ADHD. Clinical Psychology Review, 26, 433–444.

    PubMed  Google Scholar 

  • Laasonen, M., et al. (2012). Project DyAdd: Classical eyeblink conditioning in adults with dyslexia and ADHD. Experimental Brain Research, 223, 19–32.

    PubMed  Google Scholar 

  • Lai, F., & Williams, R. S. (1989). A prospective study of Alzheimer disease in Down syndrome. Archives of Neurology, 46, 849–853.

    PubMed  Google Scholar 

  • LeJeune, J., Gautier, M., & Turpin, R. (1959). Study of somatic chromosomes from 9 mongoloid children. Comptes Renus de l’Academic les Sciences, 248, 1721–1722.

    Google Scholar 

  • Lewis, D. A., & Levitt, P. (2002). Schizophrenia as a disorder of neurodevelopment. Annual Review of Neuroscience, 25, 409–432.

    PubMed  Google Scholar 

  • Limperopoulos, C., et al. (2007). Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors? Pediatrics, 120, 584–593.

    PubMed  Google Scholar 

  • Linkersdorfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M., & Fiebach, C. J. (2012). Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: An ALE meta-analysis. PLoS ONE, 7, e43122.

    PubMed Central  PubMed  Google Scholar 

  • Lintz, L. M., Fitzgerald, H. E., & Brackbill, Y. (1967). Conditioning the eyeblink response to sound in infants. Psychonomic Science, 7, 405–406.

    Google Scholar 

  • Little, A. H., Lipsitt, L. P., & Rovee-Collier, C. (1984). Classical conditioning and retention of the infant’s eyelid response: Effects of age and interstimulus interval. Journal of Experimental Child Psychology, 37, 512–524.

    PubMed  Google Scholar 

  • Marenco, S., Weinberger, D. R., & Schreurs, B. G. (2003). Single-cue delay and trace classical conditioning in schizophrenia. Biological Psychiatry, 53, 390–402.

    PubMed  Google Scholar 

  • McCormick, D. A., Steinmetz, J. E., & Thompson, R. F. (1985). Lesions of the inferior olivary complex cause extinction of the classically conditioned eyeblink response. Brain Research, 271, 73–88.

    Google Scholar 

  • McCormick, D. A., & Thompson, R. F. (1984). Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. Journal of Neuroscience, 4, 2811–2822.

    PubMed  Google Scholar 

  • Morgan, J. J. B., & Morgan, S. S. (1944). Infant learning as a developmental index. Journal of Genetic Psychology, 65, 281–289.

    Google Scholar 

  • Moyer, J. F., Deyo, R. A., & Disterhoft, J. F. (1990). Hippocampectomy disrupts trace eye-blink conditioning in rabbits. Behavioral Neuroscience, 104, 243–252.

    PubMed  Google Scholar 

  • Naito, T., & Lipsitt, L. P. (1969). Two attempts to condition eyelid responses in human infants. Journal of Experimental Child Psychology, 8, 263–270.

    PubMed  Google Scholar 

  • Nicolson, R. I., Daum, I., Schugens, M. M., Fawcett, A. J., & Schulz, A. (2002). Eyeblink conditioning indicates cerebellar abnormality in dyslexia. Experimental Brain Research, 143, 42–50.

    PubMed  Google Scholar 

  • Nicolson, R. I., Fawcett, A. J., Berry, E. L., Jenkins, I. H., Dean, P., & Brooks, D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet, 353, 1662–1667.

    PubMed  Google Scholar 

  • Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24, 508–511.

    PubMed  Google Scholar 

  • O’Connor, N., & Rawnsley, K. (1959). Two types of conditioning in psychotics and normals. Journal of Abnormal and Social Psychology, 58, 157–161.

    Google Scholar 

  • O’Halloran, C. J., Kinsella, G. J., & Storey, E. (2012). The cerebellum and neuropsychological functioning: A critical review. Journal of Clinical and Experimental Neuropsychology, 34, 35–56.

    PubMed  Google Scholar 

  • Ohlrich, E. S., & Ross, L. E. (1968). Acquisition and differential conditioning of the eyelid response in normal and retarded children. Journal of Experimental Child Psychology, 6, 181–193.

    PubMed  Google Scholar 

  • Pennington, B. F., Moon, J., Edgin, J., Stedron, J., & Nadel, L. (2003). The neuropsychology of Down syndrome: Evidence for hippocampal dysfunction. Child Development, 74, 75–93.

    PubMed  Google Scholar 

  • Perrett, S. P., & Mauk, M. D. (1995). Extinction of conditioned eyelid responses requires the anterior lobe of the cerebellar cortex. Journal of Neuroscience, 15, 2074–2080.

    PubMed  Google Scholar 

  • Perrett, S. P., Ruiz, B. P., & Mauk, M. D. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. Journal of Neuroscience, 13, 1708–1718.

    PubMed  Google Scholar 

  • Ramnani, N., & Yeo, C. H. (1996). Reversible inactivations of the cerebellum prevent the extinction of conditioned nictitating membrane responses in rabbits. Journal of Physiology, 495, 159–168.

    PubMed Central  PubMed  Google Scholar 

  • Rapoport, J. (2001). The cerebellum in psychiatric disorders. International Review of Psychiatry, 13, 295–301.

    Google Scholar 

  • Reeb-Sutherland, B. C., Fifer, W. P., Byrd, D. L., Hammock, E. A. D., Levitt, P., & Fox, N. A. (2011). One-month-old human infants learn about the social world while they sleep. Developmental Science, 14, 1134–1141.

    PubMed Central  PubMed  Google Scholar 

  • Reeb-Sutherland, B. C., Levitt, P., & Fox, N. A. (2012). The predictive nature of individual differences in early associative learning and emerging social behavior. PLoS ONE, 7, e30511.

    PubMed Central  PubMed  Google Scholar 

  • Rendle-Short, J. (1961). The puff test: An attempt to assess the intelligence of young children by use of a conditioned reflex. Archives of Diseases of Childhood, 36, 50–57.

    Google Scholar 

  • Rochat, P., & Striano, T. (1999). Social-cognitive development in the first year. In P. Rochat (Ed.), Early social cognition: Understanding others in the first months of life (pp. 3–34). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Rogers, S. J. (2009). What are infant siblings teaching us about autism in infancy? Autism Research, 2, 125–137.

    PubMed Central  PubMed  Google Scholar 

  • Ross, L. E., Headrick, M. W., & MacKay, P. B. (1967). Classical eyelid conditioning in young mongoloid children. Journal of Mental Deficiency, 72, 21–29.

    Google Scholar 

  • Ross, L. E., Koski, C. H., & Yeager, J. (1964). Classical eyelid conditioning of the severely retarded: Partial reinforcement effects. Psychonomic Science, 1, 253–254.

    Google Scholar 

  • Rovee-Collier, C., & Lipsitt, L. P. (1982). Learning, adaptation, and memory in the newborn. In P. Stratton (Ed.), Psychobiology of the human newborn (pp. 147–190). Chichester: Wiley.

    Google Scholar 

  • Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum, 6, 254–267.

    PubMed  Google Scholar 

  • Schmajuk, N. A., & DiCarlo, J. J. (1991). A neural network approach to hippocampal function in classical conditioning. Behavioral Neuroscience, 105, 82–110.

    PubMed  Google Scholar 

  • Sears, L. L., Andreasen, N. C., & O’Leary, D. S. (2000). Cerebellar functional abnormalities in schizophrenia are suggested by classical eyeblink conditioning. Biological Psychiatry, 48, 204–209.

    PubMed  Google Scholar 

  • Sears, L. L., Finn, P. R., & Steinmetz, J. E. (1994). Abnormal classical eye-blink conditioning in autism. Journal of Autism and Developmental Disorders, 24, 737–751.

    PubMed  Google Scholar 

  • Sears, L. L., & Steinmetz, J. E. (1990). Haloperidol impairs classically conditioned nictitating membrane responses and conditioning-related cerebellar interpositus nucleus activity in rabbits. Pharmacology, Biochemistry and Behavior, 36, 821–830.

    PubMed  Google Scholar 

  • Senju, A., Southgate, V., White, S., & Frith, U. (2009). Mindblind eyes: An absence of spontaneous theory of mind in Asperger syndrome. Science, 325, 883–885.

    PubMed  Google Scholar 

  • Shamay-Tsoory, S. G., et al. (2005). The neural correlates of understanding the other’s distress: A positron emission tomography investigation of accurate empathy. NeuroImage, 27, 468–472.

    PubMed  Google Scholar 

  • Shaywitz, S., & Shaywitz, B. (2003). Dyslexia: specific reading disability. Pediatric Review, 24, 147–153.

    Google Scholar 

  • Smit, A. E., et al. (2008). Savings and extinction of conditioned eyeblink responses in fragile X syndrome. Genes, Brain and Behavior, 7, 770–777.

    Google Scholar 

  • Sokolov, A. A., Erb, M., Gharabaghi, A., Grodd, W., Tatagiba, M. S., & Pavlova, M. (2012). Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus. NeuroImage, 59, 2824–2830.

    PubMed  Google Scholar 

  • Sokolov, A. A., Gharabaghi, A., Tatagiba, M. S., & Pavlova, M. (2010). Cerebellar engagement in an action observation network. Cerebral Cortex, 20, 486–491.

    PubMed  Google Scholar 

  • Solomon, P. R., Vander Shaaf, E. R., Thompson, R. F., & Weisz, D. J. (1986). Hippocampus and trace conditioning of the rabbit’s classically conditioned nictitating membrane response. Behavioral Neuroscience, 100, 729–744.

    PubMed  Google Scholar 

  • Spain, B. (1966). Eyelid conditioning and arousal in schizophrenic and normal subjects. Journal of Abnormal Psychology, 71, 260–266.

    PubMed  Google Scholar 

  • Spottiswoode, B. S., et al. (2011). Diffusion tensor imaging of the cerebellum and eyeblink conditioning in fetal alcohol spectrum disorder. Alcoholism, Clinical and Experimental Research, 35, 2174–2183.

    PubMed Central  PubMed  Google Scholar 

  • Stanfield, A. C., McIntosh, A. M., Spencer, M. D., Philip, R., Gaur, S., & Lawrie, S. M. (2008). Towards a neuroanatomy of autism: A systematic review and meta-analysis of structural magnetic resonance imaging studies. European Psychiatry, 23, 289–299.

    PubMed  Google Scholar 

  • Stanton, M. E., Claflin, D. I., & Herbert, J. S. (2010). Ontogeny of multiple memory systems: Eyeblink conditioning in rodents and humans. In M. S. Blumberg, J. H. Freeman, & Robinson, S. R. (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 501–526). New York: Oxford University Publishing.

  • Stanton, M. E., & Goodlett, C. R. (1998). Neonatal ethanol exposure impairs eyeblink conditioning. Alcoholism, Clinical and Experimental Research, 22, 270–275.

    PubMed  Google Scholar 

  • Steinmetz, J. E., & Rice, M. L. (2010). Cerebellar-dependent delay eyeblink conditioning in adoloscents with Specific Language Impairment. Journal of Neurodevelopmental Disorders, 2, 243–251.

    PubMed Central  PubMed  Google Scholar 

  • Stern, D. N. (2000). The interpersonal world of the infant. New York: Basic Books.

    Google Scholar 

  • Tarabulsy, G. M., Tessier, R., & Kappas, A. (1996). Contingency detection and the contingent organization of behavior in interactions: Implications for socioemotional development in infancy. Psychological Bulletin, 120, 25–41.

    PubMed  Google Scholar 

  • Taylor, J. A., & Spence, K. W. (1954). Conditioning level in the behavior disorders. Journal of Abnormal and Social Psychology, 49, 497–503.

    Google Scholar 

  • Tobia, M. J., & Woodruff-Pak, D. S. (2009). Delay eyeblink classical conditioning is impaired in fragile X syndrome. Behavioral Neuroscience, 123, 665–676.

    PubMed Central  PubMed  Google Scholar 

  • Trevarthen, C. (1979). The foundations of intersubjectivity: development of interpersonal and cooperative understanding in infants. In D. Olson (Ed.), The social foundations of language and thought (pp. 316–342). New York: W.W. Norton & Co.

  • Verkerk, A., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905–914. doi:10.1016/0092-8674(91)90397-h.

    PubMed  Google Scholar 

  • Watson, J. S. (1966). The development of generalization of “contingency awareness” in early infancy: some hypotheses. Merril Palmer Quarterly, 12, 123–155.

    Google Scholar 

  • Wenger, M. A. (1936). An investigation of conditioned responses in human infants. University of Iowa Studies in Child Welfare, 12, 9–90.

    Google Scholar 

  • Werden, D., & Ross, L. E. (1972). A comparison of the trace and delay classical conditioning performance of normal children. Journal of Experimental Child Psychology, 14, 126–132.

    PubMed  Google Scholar 

  • Wisniewski, K. E., Wisniewski, H. M., & Wen, G. Y. (1985). Occurence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Annals of Neurology, 17, 278–282.

    PubMed  Google Scholar 

  • Woodruff-Pak, D. S., & Disterhoft, J. F. (2008). Where is the trace in trace conditioning? Trends in Neurosciences, 31, 105–112.

    PubMed  Google Scholar 

  • Woodruff-Pak, D. S., Papka, M., & Simon, E. W. (1994). Eyeblink classical conditioning in Down’s syndrome, Fragile X syndrome, and normal adults over and under age 35. Neuropsychology, 8, 14–24.

    Google Scholar 

  • Woodruff-Pak, D. S., Romano, S., & Papka, M. (1996). Training to criterion in eyeblink classical conditioning in Alzheimer’s disease, Down’s syndrome with Alzheimer’s disease, and healthy elderly. Behavioral Neuroscience, 110, 22–29.

    PubMed  Google Scholar 

  • Woodruff-Pak, D. S., & Steinmetz, J. E. (Eds.). (2000a). Eyeblink classical conditioning: Volume 1 applications in humans. Norwell, MA: Kluwer Academic Publishers.

    Google Scholar 

  • Woodruff-Pak, D. S., & Steinmetz, J. E. (Eds.). (2000b). Eyeblink classical conditioning: Volume 2 animal models. Norwell, MA: Kluwer Academic Publishers.

    Google Scholar 

  • Yung, A. R., McGorry, P. D., McFarlane, C. A., Jackson, H. J., Patton, G. C., & Rakkar, A. (1996). Monitoring and care of young people at incipient risk of psychosis. Schizophrenia Bulletin, 22, 283–303.

    PubMed  Google Scholar 

  • Yung, A. R., et al. (2003). Psychosis prediction: 12-month follow up of a high-risk (“prodromal”) group. Schizophrenia Research, 60, 21–32.

    PubMed  Google Scholar 

Download references

Acknowledgments

The writing of this paper was supported by NIMH grant MH 080759 to Pat Levitt and Nathan Fox.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bethany C. Reeb-Sutherland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeb-Sutherland, B.C., Fox, N.A. Eyeblink Conditioning: A Non-invasive Biomarker for Neurodevelopmental Disorders. J Autism Dev Disord 45, 376–394 (2015). https://doi.org/10.1007/s10803-013-1905-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-013-1905-9

Keywords

Navigation