Journal of Autism and Developmental Disorders

, Volume 43, Issue 11, pp 2677–2685 | Cite as

Autism and Phthalate Metabolite Glucuronidation

  • T. Peter Stein
  • Margaret D. Schluter
  • Robert A. Steer
  • Xue Ming
Original Paper


Exposure to environmental chemicals may precipitate autism spectrum disorders (ASD) in genetically susceptible children. Differences in the efficiency of the glucuronidation process may substantially modulate substrate concentrations and effects. To determine whether the efficiency of this pathway is compromised in children with ASD, we measured the efficiency of glucuronidation for a series of metabolites derived from the commonly used plasticizer, diethylhexyl phthalate. Spot urines were collected and analyzed for the fraction of each metabolite conjugated by isotope dilution-liquid chromatography mass spectrometry-mass spectrometry. The degree of glucuronidation was lower with the ASD group. The glucuronidation pathway may differ in some children with ASD.


Diethylhexyl phthalate Phthalates Autism Glucuronidation 


  1. Alberti, A., Pirrone, P., Elia, M., Waring, R. H., & Romano, C. (1999). Sulphation deficit in “low-functioning” autistic children: A pilot study. Biological Psychiatry, 46, 420–424.PubMedCrossRefGoogle Scholar
  2. Argikar, U. A., Iwuchukwu, O. F., & Nagar, S. (2008). Update on tools for evaluation of uridine diphosphoglucuronosyltransferase polymorphisms. Expert Opinion On Drug Metabolism & Toxicology, 4, 879–894.CrossRefGoogle Scholar
  3. Armstrong, R. N. (1997). Structure, catalytic mechanism and evolution of the glutathione transferase. Chemical Research in Toxicology, 10, 2–18.PubMedCrossRefGoogle Scholar
  4. Baio, J., et al. (2012). Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, 14 sites, United States, 2008 Surveillance summaries. Morbidity and Mortality Weekly Report (MMWR), 61, 1–19.Google Scholar
  5. Buyske, S., Williams, T. A., Mars, A. E., Stenroos, E. S., Ming, S. X., Wang, R., et al. (2006). Analysis of case-parent trios at a locus with a deletion allele: Association of GSTM1 with autism. BMC Genetics, 7, 8.PubMedCrossRefGoogle Scholar
  6. Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., & Needham, L. L. (2008). Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environmental Health Perspectives, 116, 39–44.PubMedCrossRefGoogle Scholar
  7. Cohen, J. (1993). A power primer. Psychological Bulletin, 112, 155–159.CrossRefGoogle Scholar
  8. Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed., pp. 265–266). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  9. de Cock, M., Maas, Y. G., & van de Bor, M. (2012). Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatrica, 101, 811–818.PubMedCrossRefGoogle Scholar
  10. Edelson, S. B., & Cantor, D. S. (2000). The neurotoxic etiology of the autistic spectrum disorder: A replicative study. Toxicology and Industrial Health, 16, 239–247.Google Scholar
  11. Engel, S. M., Miodovnik, A., Canfield, R. L., Zhu, C., Silva, M. J., Calafat, A. M., et al. (2010). Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environmental Health Perspectives, 118, 565–571.PubMedCrossRefGoogle Scholar
  12. Hauser, R., Meeker, J. D., Duty, S., Silva, M. J., & Calafat, A. M. (2006). Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology, 17, 682–691.PubMedCrossRefGoogle Scholar
  13. Herbert, M. R. (2010). Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Current Opinion in Neurology, 23, 103–110.PubMedCrossRefGoogle Scholar
  14. Herr, C., Zur Nieden, A., Koch, H. M., Schuppe, H. C., Fieber, C., Angerer, J., et al. (2009). Urinary di(2-ethylhexyl)phthalate (DEHP)—metabolites and male human markers of reproductive function. International Journal of Hygiene and Environmental Health, 212, 648–653.PubMedCrossRefGoogle Scholar
  15. Hwang, H. M., Park, E. K., Young, T. M., & Hammock, B. D. (2008). Occurrence of endocrine-disrupting chemicals in indoor dust. Science of the Total Environment, 404, 26–35.PubMedCrossRefGoogle Scholar
  16. James, S. J., Cutler, P., Melnyk, S., Jernigan, S., Janak, L., Gaylor, D. W., et al. (2004). Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. American Journal of Clinical Nutrition, 80, 1611–1617.PubMedGoogle Scholar
  17. James, S. J., Melnyk, S., Jernigan, S., Hubamks, A., Rose, S., & Gaylor, D. W. (2008). Abnormam methyllation-transulfuration metabolism and DNA hypomethylation among parents of children with autism. Journal of Autism and Developmental Disorders, 38, 1966–1975.PubMedCrossRefGoogle Scholar
  18. Kalkbrenner, A. E., Daniels, J. L., Chen, J. C., Poole, C., Emch, M., & Morrissey, J. (2010). Perinatal exposure to hazardous air pollutants and autism spectrum disorders at age 8. Epidemiology, 21, 631–641.PubMedCrossRefGoogle Scholar
  19. Koch, H. M. (2010). Exposure assessment to phthalates by human biomonitoring. In: PVC plasticizers 2010. Brussels: Crain Communications, 15, 11–17.Google Scholar
  20. Koch, H. M., Bolt, H. M., Preuss, R., & Angerer, J. (2005). New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Archives of Toxicology, 79, 367–376.PubMedCrossRefGoogle Scholar
  21. Koch, H. M., Preuss, R., & Angerer, J. (2006). Di(2-ethylhexyl)phthalate (DEHP): Human metabolism and internal exposure—an update and latest results. International Journal of Andrology, 29, 155–165.PubMedCrossRefGoogle Scholar
  22. Landrigan, P. J. (2010). What causes autism? Exploring the environmental contribution. Current Opinion in Pediatrics, 22, 219–225.PubMedCrossRefGoogle Scholar
  23. Larsson, M., Weiss, B., Janson, S., Sundell, J., & Bornehag, C. G. (2009). Associations between indoor environmental factors and parental-reported autistic spectrum disorders in children 6–8 years of age. Neurotoxicology, 30, 822–831.PubMedCrossRefGoogle Scholar
  24. Ming, X., Brimacombe, M., Zimmerman-Bier, B., Chaaban, J., & Wagner, G. C. (2008). Autism spectrum disorders: Concurrent disorders. Journal of Child Neurology, 23, 6–13.CrossRefGoogle Scholar
  25. Ming, X., Johnson, W. G., Stenroos, E. S., Mars, A., Lambert, G. H., & Buyske, S. (2010). Genetic variant of glutathione peroxidase 1 in autism. Brain and Development, 32, 105–109.PubMedCrossRefGoogle Scholar
  26. Muhle, R., Trentacoste, S. V., & Rapin, I. (2004). The genetics of autism. Pediatrics, 113, 472–486.CrossRefGoogle Scholar
  27. NIEHS. (2011). Report on carcinogens (12th ed, pp. 156–158). Research Triangle Park, North Carolina: U.S. Department of Health and Human Services Public Health Service National Toxicology Program.Google Scholar
  28. NTP-CERHR. (2005). NTP-CERHR expert panel update on the reproductive and developmental toxicity of Di)2-ethylhexyl) phthalate. NIEHS, Research Triangle Park, NC: National Toxicology Program—US Dept. of Health and Human Services.Google Scholar
  29. O’Reilly, B., & Waring, R. H. (2003). Enzyme and sulphur oxidation deficiencies in autistic children with known food and chemical intolerances. Journal of Orthomolecular Medicine, 4, 198–200.Google Scholar
  30. Pessah, I. N., Seegal, R. F., Lein, P. J., LaSalle, J., Yee, B. K., Van De Water, J., et al. (2008). Immunologic and neurodevelopmental susceptibilities of autism. Neurotoxicology, 29, 532–545.PubMedCrossRefGoogle Scholar
  31. Rudel, R. A., Gray, J. M., Engel, C. L., Rawsthorne, T. W., Dodson, R. E., Ackerman, J. M., et al. (2012). Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: Findings from a dietary intervention. Environmental Health Perspectives, 119, 914–920.CrossRefGoogle Scholar
  32. Silva, M. J., Malek, N. A., Hodge, C. C., Reidy, J. A., Kato, K., Barr, D. B., et al. (2003). Improved quantitative detection of 11 urinary phthalate metabolites in humans using liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 789, 393–404.PubMedCrossRefGoogle Scholar
  33. Silva, M. J., Reidy, J. A., Samander, E., Herbert, A., Needham, L. L., & Calafat, A. M. (2005). Detection of phthalate metabolites in human saliva. Archives of Toxicology, 79, 647–652.PubMedCrossRefGoogle Scholar
  34. Teitelbaum, S. L., Britton, J. A., Calafat, A. M., Ye, X., Silva, M. J., Reidy, J. A., et al. (2008). Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environmental Research, 106, 257–269.PubMedCrossRefGoogle Scholar
  35. Tukey, R. H., & Strassburg, C. P. (2000). Human UDP-glucuronosyltransferases: Metabolism, expression, and disease. Annual Review of Pharmacology and Toxicology, 40, 581–616.PubMedCrossRefGoogle Scholar
  36. Waring, R. H., & Klovrza, L. (2000). Sulphur metabolism in autism. Journal of Nutritional & Environmental Medicine, 10, 25–32.CrossRefGoogle Scholar
  37. Wells, P. G., Mackenzie, P. I., Chowdhury, J. R., Guillemette, C., Gregory, P. A., Ishii, Y., et al. (2004). Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metabolism and Disposition, 32, 281–290.PubMedCrossRefGoogle Scholar
  38. Whiteley, P., Waring, R., Williams, L., Klovrza, L., Nolan, F., Smith, S., et al. (2006). Spot urinary creatinine excretion in pervasive developmental disorders. Pediatrics International, 48, 292–297.PubMedCrossRefGoogle Scholar
  39. Williams, T. A., Mars, A. E., Buyske, S. G., Stenroos, E. S., Wang, R., Factura-Santiago, M. F., et al. (2007). Risk of autistic disorder in affected offspring of mothers with a glutathione S-transferase P1 haplotype. Archives of Pediatrics and Adolescent Medicine, 16, 356–361.Google Scholar
  40. Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., & Grether, J. K. (2006). Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco bay area. Environmental Health Perspectives, 114, 1438–1444.PubMedCrossRefGoogle Scholar
  41. Wittassek, M., Heger, W., Koch, H. M., Becker, K., Angerer, J., & Kolossa-Gehring, M. (2007). Daily intake of di(2-ethylhexyl)phthalate (DEHP) by German children—A comparison of two estimation models based on urinary DEHP metabolite levels. Int. Journal of Hygiene and Environmental Health, 210, 35–42.CrossRefGoogle Scholar
  42. Wolff, M. S., Teitelbaum, S. L., Windham, G., Pinney, S. M., Britton, J. A., Chelimo, C., et al. (2007). Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environmental Health Perspectives, 115, 116–121.PubMedCrossRefGoogle Scholar
  43. Ye, X., Pierik, F. H., Hauser, R., Duty, S., Angerer, J., Park, M. M., et al. (2008). Urinary metabolite concentrations of organophosphorous pesticides, bisphenol A, and phthalates among pregnant women in Rotterdam, the Netherlands: The Generation R study. Environmental Research, 108, 260–267.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • T. Peter Stein
    • 1
  • Margaret D. Schluter
    • 1
  • Robert A. Steer
    • 2
  • Xue Ming
    • 3
    • 4
  1. 1.Department of Surgery, School of Osteopathic MedicineUniversity of Medicine and Dentistry of New JerseyStratfordUSA
  2. 2.Department of Psychiatry, School of Osteopathic MedicineUniversity of Medicine and Dentistry of New JerseyStratfordUSA
  3. 3.Department of Neurology, New Jersey Medical SchoolUniversity of Medicine and Dentistry of New JerseyNewarkUSA
  4. 4.Department of NeurologyThe New Jersey Neuroscience Institute, JFK Medical CenterEdisonUSA

Personalised recommendations