Journal of Autism and Developmental Disorders

, Volume 43, Issue 7, pp 1623–1629 | Cite as

Bone Density in Peripubertal Boys with Autism Spectrum Disorders

  • Ann M. Neumeyer
  • Amy Gates
  • Christine Ferrone
  • Hang Lee
  • Madhusmita Misra
Original Paper


We determined whether bone mineral density (BMD) is lower in boys with autism spectrum disorders (ASD) than controls, and also assessed variables that may affect BMD in ASD. BMD was measured using dual energy X-ray absorptiometry (DXA) in 18 boys with ASD and 19 controls 8–14 years old. Boys with ASD had lower BMD Z-scores at the spine, hip and femoral neck, and differences at the hip and femoral neck persisted after controlling for maturity and BMI. Vitamin D intake from food and in serum were lower in ASD subjects, as was exercise activity. We conclude that BMD is lower in peripubertal boys with ASD and may be associated with impaired vitamin D status and lower exercise activity.


Autism Autism spectrum disorder Bone density Puberty Bone turnover Bone metabolism 



Bone mineral density


Bone mineral apparent density


Dual energy X-ray absorptiometry


Autism spectrum disorder


Insulin-like growth factor-1


Thyroid stimulating hormone




N-terminal propeptide of Type 1 procollagen




Sex hormone binding globulin


Standard deviation


Standard error


Coefficient of variation



This research was supported in part by NIH grants 1 UL1 RR025758-01 and as part of the Autism Speaks Autism Treatment Network. Further support came from a cooperative agreement (UA3 MC 11054) from the U.S. Department of Health and Human Services, Health Resources and Services Administration, Maternal and Child Health Research Program, to the Massachusetts General Hospital, and in partnership with the Lurie Center for Autism. The views expressed in this publication do not necessarily reflect the views of Autism Speaks, Inc. We are grateful to our colleagues Drs. Susan McGrew and Cynthia Molloy for their collaboration and help in setting up this project, and Drs. Susan McGrew and James Perrin for their help in preparation of this manuscript. We would also like to thank Dr. Christopher McDougle for his helpful comments in the revision of this manuscript.


  1. American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition – Text Revision (DSM-IV-TR). Washington, DC: American Psychiatric Publishing, Inc.Google Scholar
  2. Bostwick, J. R., Guthrie, S. K., & Ellingrod, V. L. (2009). Antipsychotic-induced hyperprolactinemia. Pharmacotherapy, 29(1), 64–73.PubMedCrossRefGoogle Scholar
  3. Carter, D. R., Bouxsein, M. L., & Marcus, R. (1992). New approaches for interpreting projected bone densitometry data. Journal of Bone and Mineral Research, 7(2), 137–145.PubMedCrossRefGoogle Scholar
  4. CDC. (2009). Prevalence of autism spectrum disorders—autism and developmental disabilities monitoring network, United States, 2006. MMWR Surveillance Summary, 58(10), 1–20.Google Scholar
  5. Chou, I. J., Lin, K. L., Wang, H. S., & Wang, C. J. (2007). Evaluation of bone mineral density in children receiving carbamazepine or valproate monotherapy. Acta Paediatrics of Taiwan, 48(6), 317–322.Google Scholar
  6. Davies, J. H., Evans, B. A., & Gregory, J. W. (2005). Bone mass acquisition in healthy children. Archives of Disease in Childhood, 90(4), 373–378.PubMedCrossRefGoogle Scholar
  7. Foo, L. H., Zhang, Q., Zhu, K., Ma, G., Hu, X., Greenfield, H., et al. (2009). Low vitamin D status has an adverse influence on bone mass, bone turnover, and muscle strength in Chinese adolescent girls. Journal of Nutrition, 139(5), 1002–1007.PubMedCrossRefGoogle Scholar
  8. Greaves-Lord, K., Huizink, A. C., Oldehinkel, A. J., Ormel, J., Verhulst, F. C., & Ferdinand, R. F. (2009). Baseline cortisol measures and developmental pathways of anxiety in early adolescence. Acta Paediatrica Scandinavia, 120(3), 178–186.CrossRefGoogle Scholar
  9. Greulich, W., & Pyle, S. (1959). Radiographic atlas of skeletal development of the hand and wrist (2nd ed.). Stanford: Stanford University Press.Google Scholar
  10. Grey, V., Atkinson, S., Drury, D., Casey, L., Ferland, G., Gundberg, C., et al. (2008). Prevalence of low bone mass and deficiencies of vitamins D and K in pediatric patients with cystic fibrosis from 3 Canadian centers. Pediatrics, 122(5), 1014–1020.PubMedCrossRefGoogle Scholar
  11. Hediger, M. L., England, L. J., Molloy, C. A., Yu, K. F., Manning-Courtney, P., & Mills, J. L. (2008). Reduced bone cortical thickness in boys with autism or autism spectrum disorder. Journal of Autism and Developmental Disorders, 38(5), 848–856.PubMedCrossRefGoogle Scholar
  12. Heyman, R., Guggenbuhl, P., Corbel, A., Bridoux-Henno, L., Tourtelier, Y., Balencon-Morival, M., et al. (2009). Effect of a gluten-free diet on bone mineral density in children with celiac disease. Gastroenterologie Clinique et Biologique, 33(2), 109–114.PubMedCrossRefGoogle Scholar
  13. Holick, M. F., Binkley, N. C., Bischoff-Ferrari, H. A., Gordon, C. M., Hanley, D. A., Heaney, R. P., et al. (2011). Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. Journal of Clinical Endocrinology and Metabolism, 96(7), 1911–1930.PubMedCrossRefGoogle Scholar
  14. Horvath, K., Papadimitriou, J. C., Rabsztyn, A., Drachenberg, C., & Tildon, J. T. (1999). Gastrointestinal abnormalities in children with autistic disorder. Journal of Pediatrics, 135(5), 559–563.PubMedCrossRefGoogle Scholar
  15. Kushak, R. I., Lauwers, G. Y., Winter, H. S., & Buie, T. M. (2011). Intestinal disaccharidase activity in patients with autism: Effect of age, gender, and intestinal inflammation. Autism, 15(3), 285–294.PubMedCrossRefGoogle Scholar
  16. Leder, B. Z., LeBlanc, K. M., Schoenfeld, D. A., Eastell, R., & Finkelstein, J. S. (2003). Differential effects of androgens and estrogens on bone turnover in normal men. Journal of Clinical Endocrinology and Metabolism, 88(1), 204–210.PubMedCrossRefGoogle Scholar
  17. Lehtonen-Veromaa, M. K., Mottonen, T. T., Nuotio, I. O., Irjala, K. M., Leino, A. E., & Viikari, J. S. (2002). Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: A 3-y prospective study. American Journal of Clinical Nutrition, 76(6), 1446–1453.PubMedGoogle Scholar
  18. Lopez-Duran, N. L., Kovacs, M., & George, C. J. (2009). Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents: A meta-analysis. Psychoneuroendocrinology, 34(9), 1272–1283.PubMedCrossRefGoogle Scholar
  19. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr., Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.PubMedCrossRefGoogle Scholar
  20. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.PubMedCrossRefGoogle Scholar
  21. Michael, H., Harkonen, P. L., Vaananen, H. K., & Hentunen, T. A. (2005). Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. Journal of Bone and Mineral Research, 20(12), 2224–2232.PubMedCrossRefGoogle Scholar
  22. Ming, X., Brimacombe, M., & Wagner, G. C. (2007). Prevalence of motor impairment in autism spectrum disorders. Brain Dev, 29(9), 565–570.PubMedCrossRefGoogle Scholar
  23. Misra, M., Aggarwal, A., Miller, K. K., Almazan, C., Worley, M., Soyka, L. A., et al. (2004). Effects of anorexia nervosa on clinical, hematologic, biochemical, and bone density parameters in community-dwelling adolescent girls. Pediatrics, 114(6), 1574–1583.PubMedCrossRefGoogle Scholar
  24. Misra, M., Pacaud, D., Petryk, A., Collett-Solberg, P. F., & Kappy, M. (2008). Vitamin D deficiency in children and its management: Review of current knowledge and recommendations. Pediatrics, 122(2), 398–417.PubMedCrossRefGoogle Scholar
  25. Ogden, C., Kuczmarski, R., Flegal, K., Mei, Z., Guo, S., Wei, R., et al. (2002). Centers for Diseases Control and Prevention 2000 growth charts for the United States: Improvements to the 1997 National Center for health Statistics version. Pediatrics, 109, 45–60.PubMedCrossRefGoogle Scholar
  26. Pack, A. M., Morrell, M. J., Randall, A., McMahon, D. J., & Shane, E. (2008). Bone health in young women with epilepsy after one year of antiepileptic drug monotherapy. Neurology, 70(18), 1586–1593.PubMedCrossRefGoogle Scholar
  27. Pan, C. Y. (2008). Objectively measured physical activity between children with autism spectrum disorders and children without disabilities during inclusive recess settings in Taiwan. Journal of Autism and Developmental Disorders, 38(7), 1292–1301.PubMedCrossRefGoogle Scholar
  28. Ragusa, L., Elia, M., & Scifo, R. (1993). Growth hormone deficit in autism. Journal of Autism and Developmental Disorders, 23(2), 421–422.PubMedCrossRefGoogle Scholar
  29. Russell, M., Breggia, A., Mendes, N., Klibanski, A., & Misra, M. (2011). Growth hormone is positively associated with surrogate markers of bone turnover during puberty. Clinical Endocrinology (Oxford), 75(4), 482–488.CrossRefGoogle Scholar
  30. Schmidt, S., Mellstrom, D., Norjavaara, E., Sundh, S. V., & Saalman, R. (2009). Low bone mineral density in children and adolescents with inflammatory bowel disease: A population-based study from Western Sweden. Inflammatory Bowel Diseases, 15(12), 1844–1850.PubMedCrossRefGoogle Scholar
  31. Sheth, R. D., Binkley, N., & Hermann, B. P. (2008). Progressive bone deficit in epilepsy. Neurology, 70(3), 170–176.PubMedCrossRefGoogle Scholar
  32. Slomski, A. (2011). IOM endorses vitamin D, calcium only for bone health, dispels deficiency claims. JAMA, 305(5), 453–454, 456.Google Scholar
  33. Soyka, L. A., Grinspoon, S., Levitsky, L. L., Herzog, D. B., & Klibanski, A. (1999). The effects of anorexia nervosa on bone metabolism in female adolescents. Journal of Clinical Endocrinology and Metabolism, 84(12), 4489–4496.PubMedCrossRefGoogle Scholar
  34. Valicenti-McDermott, M. D., McVicar, K., Cohen, H. J., Wershil, B. K., & Shinnar, S. (2008). Gastrointestinal symptoms in children with an autism spectrum disorder and language regression. Pediatric Neurology, 39(6), 392–398.PubMedCrossRefGoogle Scholar
  35. Wren, T. A., Liu, X., Pitukcheewanont, P., & Gilsanz, V. (2005). Bone acquisition in healthy children and adolescents: Comparisons of dual-energy X-ray absorptiometry and computed tomography measures. Journal of Clinical Endocrinology and Metabolism, 90(4), 1925–1928.PubMedCrossRefGoogle Scholar
  36. Zemel, B. S., Kalkwarf, H. J., Gilsanz, V., Lappe, J. M., Oberfield, S., Shepherd, J. A., et al. (2011). Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: Results of the bone mineral density in childhood study. Journal of Clinical Endocrinology and Metabolism, 96(10), 3160–3169.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ann M. Neumeyer
    • 1
  • Amy Gates
    • 4
  • Christine Ferrone
    • 4
  • Hang Lee
    • 2
  • Madhusmita Misra
    • 3
  1. 1.Lurie Center for AutismMassachusetts General Hospital and Harvard Medical SchoolLexingtonUSA
  2. 2.Biostatistics CenterMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Pediatric Endocrine and Neuroendocrine UnitsMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  4. 4.Lurie Center for AutismMassachusetts General HospitalLexingtonUSA

Personalised recommendations