Reduced Gyral Window and Corpus Callosum Size in Autism: Possible Macroscopic Correlates of a Minicolumnopathy

  • Manuel F. CasanovaEmail author
  • Ayman El-Baz
  • Meghan Mott
  • Glenn Mannheim
  • Hossam Hassan
  • Rachid Fahmi
  • Jay Giedd
  • Judith M. Rumsey
  • Andrew E. Switala
  • Aly Farag
Original Paper


Minicolumnar changes that generalize throughout a significant portion of the cortex have macroscopic structural correlates that may be visualized with modern structural neuroimaging techniques. In magnetic resonance images (MRIs) of fourteen autistic patients and 28 controls, the present study found macroscopic morphological correlates to recent neuropathological findings suggesting a minicolumnopathy in autism. Autistic patients manifested a significant reduction in the aperture for afferent/efferent cortical connections, i.e., gyral window. Furthermore, the size of the gyral window directly correlated to the size of the corpus callosum. A reduced gyral window constrains the possible size of projection fibers and biases connectivity towards shorter corticocortical fibers at the expense of longer association/commisural fibers. The findings may help explain abnormalities in motor skill development, differences in postnatal brain growth, and the regression of acquired functions observed in some autistic patients.


Autistic disorder Corpus callosum Magnetic resonance imaging Telencephalon 



The series of patients and controls were collected under the guidance and support of Dr. Judith Rapoport, Chief of the Child Psychiatry Branch at the National institute of Mental Heath.


  1. Adalsteinsson, D., & Sethian, J. A. (1995). A fast level set method for propagating interfaces. Journal of Computational Physics, 118, 269–277. doi: 10.1006/jcph.1995.1098.CrossRefGoogle Scholar
  2. Aggoun-Zouaoui, D., Kiper, D. C., & Innocenti, G. M. (1996). Growth of callosal terminal arbors in primary visual areas of the cat. The European Journal of Neuroscience, 8, 1132–1148. doi: 10.1111/j.1460-9568.1996.tb01281.x.CrossRefGoogle Scholar
  3. Allman, J. M. (1990). Evolution of neocortex. In E. G. Jones & A. Peters (Eds.), Comparative structure and evolution of cerebral cortex (pp. 269–283). New York: Plenum Press.Google Scholar
  4. Armstrong, E., Curtis, M., Fregoe, C., Zilles, K., Casanova, M. F., & McCarthy, W. (1991). Cortical gyrification in the rhesus monkey: A test of the mechanical folding hypothesis. Cerebral Cortex (New York, N.Y.), 1, 426–432. doi: 10.1093/cercor/1.5.426.CrossRefGoogle Scholar
  5. Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of human gyrification. Cerebral Cortex (New York, N.Y.), 5, 56–63. doi: 10.1093/cercor/5.1.56.CrossRefGoogle Scholar
  6. Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59, 158–159.Google Scholar
  7. Bailey, A., Luthert, P., Dean, A., Harding, B., Janota, I., Montgomery, M., et al. (1998). A clinicopathological study of autism. Brain, 121, 889–905. doi: 10.1093/brain/121.5.889.PubMedCrossRefGoogle Scholar
  8. Bailey, A., Phillips, W., & Rutter, M. (1996). Autism: Toward an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. Journal of Child Psychology and Psychiatry and Allied Disciplines, 37, 39–126. doi: 10.1111/j.1469-7610.1996.tb01381.x.Google Scholar
  9. Baranek, G. T., Parham, D., & Bodfish, J. W. (2005). Sensory and motor features in autism: Assessment and intervention. In F. R. Volkmar, R. Paul, A. Lin, & D. Cohen (Eds.), Handbook of autism and pervasive developmental disorders, vol. 2: Assessment, interventions, and policy (pp. 831–857). New Jersey: Wiley.Google Scholar
  10. Bauman, M. L., & Kemper, T. L. (1985). Histoanatomic observations of the brain in early infantile autism. Neurology, 35, 866–874.PubMedGoogle Scholar
  11. Bauman, M. L., & Kemper, T. L. (1988). Limbic and cerebellar abnormalities: Consistent findings in infantile autism. Journal of Neuropathology and Experimental Neurology, 47, 369.Google Scholar
  12. Bauman, M. L., & Kemper, T. L. (1994). Neuroanatomic observations of the brain in autism. In M. L. Bauman & T. L. Kemper (Eds.), The neurobiology of autism (pp. 119–145). Baltimore: The Johns Hopkins University Press.Google Scholar
  13. Blanton, R. E., Levitt, J. G., Thompson, P. M., Narr, K. L., Capetillo-Cunliffe, L., Nobel, A., et al. (2001). Mapping cortical asymmetry and complexity patterns in normal children. Psychiatry Research: Neuroimaging, 107, 29–43. doi: 10.1016/S0925-4927(01)00091-9.PubMedCrossRefGoogle Scholar
  14. Bouman, C., & Sauer, K. (1993). A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Transactions on Image Processing, 2, 296–310. doi: 10.1109/83.236536.PubMedCrossRefGoogle Scholar
  15. Bradbury, J. (2005). Molecular insights into human brain evolution. PLoS Biology, 3, e50. doi: 10.1371/journal.pbio.0030050.PubMedCrossRefGoogle Scholar
  16. Brodmann, K. (1913). Neue Forschungsergebnisse der Grosshirnrindenanatomie mit besonderer Berücksichtigung anthropologischer Fragen. Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte, 85, 200–240.Google Scholar
  17. Brown, A. G. (2001). Nerve cells and nervous systems: An introduction to neuroscience (2nd ed.). London: Springer.Google Scholar
  18. Buxhoeveden, D. P., Semendeferi, K., Buckwalter, J., Schenker, N., Switzer, R., & Courchesne, E. (2006). Reduced minicolumns in the frontal cortex of patients with autism. Neuropathology and Applied Neurobiology, 32, 483–491. doi: 10.1111/j.1365-2990.2006.00745.x.PubMedCrossRefGoogle Scholar
  19. Casanova, M. F. (2004). White matter volume increase and minicolumns in autism. Annals of Neurology, 56, 453. doi: 10.1002/ana.20196.PubMedCrossRefGoogle Scholar
  20. Casanova, M. F., Araque, J., Giedd, J., & Rumsey, J. M. (2004). Reduced brain size and gyrification in the brains of dyslexic patients. Journal of Child Neurology, 19, 275–281. doi: 10.1177/088307380401900407.PubMedCrossRefGoogle Scholar
  21. Casanova, M. F., Buxhoeveden, D., Switala, A., & Roy, E. (2002a). Minicolumnar pathology in autism. Neurology, 58, 428–432.PubMedGoogle Scholar
  22. Casanova, M. F., Buxhoeveden, D., Switala, A., & Roy, E. (2002b). Neuronal density and architecture (gray level index) in the brains of autistic patients. Journal of Child Neurology, 17, 515–521. doi: 10.1177/088307380201700708.PubMedCrossRefGoogle Scholar
  23. Casanova, M. F., Farag, A., El-Baz, A., Mott, M., Hassan, H., Fahmi, R., Switala, A. E. (2006a). Abnormalities of the gyral window in autism: A macroscopic correlate to a putative minicolumnopathy. Journal of Special Education and Rehabilitation, 1(1–2), 85–101.Google Scholar
  24. Casanova, M. F., & Tillquist, C. (2008). Encephalization, emergent properties, and psychiatry: A minicolumnar perspective. The Neuroscientist, 14, 101–118. doi: 10.1177/1073858407309091.PubMedCrossRefGoogle Scholar
  25. Casanova, M. F., Van Kooten, I. A. J., Switala, A. E., Van Engeland, H., Heinsen, H., Steinbusch, H. W. M., et al. (2006b). Minicolumnar abnormalities in autism. Acta Neuropathologica, 112, 287–303. doi: 10.1007/s00401-006-0085-5.PubMedCrossRefGoogle Scholar
  26. Casanova, M. F., Van Kooten, I., Switala, A. E., Van England, H., Heinsen, H., Steinbuch, H. W. M., et al. (2006c). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clinical Neuroscience Research, 6, 127–133. doi: 10.1016/j.cnr.2006.06.003.CrossRefGoogle Scholar
  27. Chambers, D., & Fishell, G. (2006). Functional genomics of early cortex patterning. Genome Biology, 7, 202. doi: 10.1186/gb-2006-7-1-202.PubMedCrossRefGoogle Scholar
  28. Chenn, A., & Walsh, C. A. (2003). Increased neuronal production, enlarged forebrains, and cytoarchitectural distortions in β-catenin overexpressing transgenic mice. Cerebral Cortex (New York, N.Y.), 13, 599–606. doi: 10.1093/cercor/13.6.599.CrossRefGoogle Scholar
  29. Cook, N. D. (1984). Homotopic callosal inhibition. Brain and Language, 23, 116–125. doi: 10.1016/0093-934X(84)90010-5.PubMedCrossRefGoogle Scholar
  30. Courchesne, E., Carper, R. A., & Akshoomoff, N. A. (2003). Evidence of brain overgrowth in the first year of life in autism. Journal of the American Medical Association, 290, 337–344. doi: 10.1001/jama.290.3.337.PubMedCrossRefGoogle Scholar
  31. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., et al. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: An MRI study. Neurology, 57, 245–254.PubMedGoogle Scholar
  32. Courchesne, E., Muller, R. A., & Saitoh, O. (1999). Brain weight in autism: Normal in the majority of cases, megaloencephalic in rare cases. Neurology, 52, 1057–1059.PubMedGoogle Scholar
  33. Dawson, G., Munson, J., Webb, S. J., Nalty, T., Abbott, R., & Toth, K. (2007). Rate of head growth decelerates and symptoms worsen in the second year of life in autism. Biological Psychiatry, 61, 458–464. doi: 10.1016/j.biopsych.2006.07.016.PubMedCrossRefGoogle Scholar
  34. Deacon, T. W. (1988). Human brain evolution, II: Embryology and brain allometry. In H. Jerison & I. Jerison (Eds.), Intelligence and evolutionary biology (pp. 383–415). Berlin: Springer.Google Scholar
  35. Deacon, T. W. (1990). Rethinking mammalian brain evolution. American Zoologist, 30, 629–705.Google Scholar
  36. Devlin, A. M., Cross, J. H., Harkness, W., Chong, W. K., Harding, B., Vargha-Khadem, F., et al. (2003). Clinical outcomes of hemispherectomy for epilepsy in childhood and adolescence. Brain, 126, 556–566. doi: 10.1093/brain/awg052.PubMedCrossRefGoogle Scholar
  37. Doidge, N. (2007). The brain that changes itself. New York: Viking.Google Scholar
  38. El-Baz, A., Casanova, M. F., Gimel’farb, G., Mott, M., & Switala, A. E. (2007a). A new image analysis approach for automatic classification of autistic brains. In IEEE Engineering in Medicine and Biology Society, Biomedical imaging: Macro to nano (pp. 352–355). Piscataway, NJ: IEEE.Google Scholar
  39. El-Baz, A., Casanova, M. F., Gimel’farb, G., Mott, M., & Switala, A. (2007b). Autism diagnostics by 3D texture analysis of cerebral white matter gyrifications. In N. Ayache, S. Ourselin, & A. Maeder (Eds.), Medical image computing and computer-assisted intervention—MICCAI 2007 (part II) (pp. 882–890). New York: Springer.CrossRefGoogle Scholar
  40. El-Baz, A., Farag, A., Ali, A., Gimel’farb, G., & Casanova, M. (2006). A framework for unsupervised segmentation of multi-modal medical images. In R. R. Beichel & M. Sonka (Eds.), Computer vision approaches to medical image analysis (pp. 120–131). New York: Springer.CrossRefGoogle Scholar
  41. Fahmi, R., Aly, A., El-Baz, A., & Farag, A. A. (2006). New deformable registration technique using scale space and curve evolution theory and a finite element based validation framework. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 28, 3041–3044.Google Scholar
  42. Fahmi, R., El-Baz, A., Hassan, H., Farag, A., & Casanova, M. F. (2007). Classification techniques for autistic vs. typically developing brain using MRI data. In Biomedical imaging: From nano to macro (pp. 1348–1351). Piscataway, NJ: IEEE.Google Scholar
  43. Ferrer, I., Hernández-Martí, M., Bernet, E., & Galofré, E. (1988). Formation and growth of the cerebral convolutions, I: Postnatal development of the median-suprasylvian gyrus and adjoining sulci in the cat. Journal of Anatomy, 160, 89–100.PubMedGoogle Scholar
  44. Friede, R. L. (1989). Developmental neuropathology (2nd ed.). Berlin: Springer.Google Scholar
  45. Gibson, K. R., Rumbaugh, D., & Beran, M. (2001). Bigger is better: Primate brain size in relationship to cognition. In D. Falk & K. R. Gibson (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 79–97). Cambridge: Cambridge University Press.Google Scholar
  46. Goldberg, J., Szatmari, P., & Nahmias, C. (1999). Imaging of autism: Lessons from the past to guide studies in the future. Canadian Journal of Psychiatry, 44, 793–801.Google Scholar
  47. Hardan, A. Y., Jou, R. J., Keshavan, M. S., Varma, R., & Minshew, N. J. (2004). Increased frontal cortical folding in autism: A preliminary MRI study. Psychiatry Research, 131, 263–268. doi: 10.1016/j.pscychresns.2004.06.001.PubMedCrossRefGoogle Scholar
  48. Hardan, A. Y., Muddasani, S., Vemulapalli, M., Keshevan, M. S., & Minshew, N. J. (2006). An MRI study of increased cortical thickness in autism. The American Journal of Psychiatry, 163, 1290–1292. doi: 10.1176/appi.ajp.163.7.1290.PubMedCrossRefGoogle Scholar
  49. Hashimoto, T., Murakawa, K., Miyazaki, M., Tayama, M., & Kuroda, Y. (1992a). Magnetic resonance imaging of the brain structures in the posterior fossa in retarded autistic children. Acta Paediatrica (Oslo, Norway), 81, 1030–1034. doi: 10.1111/j.1651-2227.1992.tb12169.x.CrossRefGoogle Scholar
  50. Hashimoto, T., Tayama, M., Miyazaki, M., Murakawa, K., Shimakawa, S., Yoneda, Y., et al. (1993). Brainstem involvement in high-functioning autistic children. Acta Neurologica Scandinavica, 88, 123–128.PubMedCrossRefGoogle Scholar
  51. Hashimoto, T., Tayama, M., Miyazaki, M., Sakurama, N., Yoshimoto, T., Murakawa, K., et al. (1992b). Reduced brainstem size in children with autism. Brain and Development, 14, 94–97.PubMedGoogle Scholar
  52. Haydar, T. F., Bambrick, L. L., Krueger, B. K., & Rakic, P. (1999). Organotypic slice cultures for analysis of proliferation, cell death, and migration in the embryonic neocortex. Brain Research Protocols, 4, 425–437. doi: 10.1016/S1385-299X(99)00033-1.PubMedCrossRefGoogle Scholar
  53. Herbert, M. R. (2005). Large brains in autism: The challenge of pervasive abnormalities. The Neuroscientist, 11, 417–440. doi: 10.1177/0091270005278866.PubMedCrossRefGoogle Scholar
  54. Herbert, M. R., Ziegler, D. A., Makris, N., Filipek, P. A., Kemper, T. L., Normandin, J. J., et al. (2004). Localization of white matter volume increase in autism and developmental language disorder. Annals of Neurology, 55, 530–540. doi: 10.1002/ana.20032.PubMedCrossRefGoogle Scholar
  55. Hines, M., Chiu, I., McAdams, L. A., Bentler, P. M., & Lipcamon, J. (1992). Cognition and the corpus callosum: Verbal fluency, visuospatial ability, and language lateralization related to midsagittal surface areas of callosal subregions. Behavioral Neuroscience, 106, 3–14. doi: 10.1037/0735-7044.106.1.3.PubMedCrossRefGoogle Scholar
  56. Hofman, M. A. (1982). Encephalization in mammals in relation to the size of the cerebral cortex. Brain, Behavior and Evolution, 20, 84–96. doi: 10.1159/000121583.PubMedCrossRefGoogle Scholar
  57. Hofman, M. A. (1989). On the evolution and geometry of the brain in mammals. Progress in Neurobiology, 32, 137–158. doi: 10.1016/0301-0082(89)90013-0.PubMedCrossRefGoogle Scholar
  58. Hofman, M. A. (2001). Brain evolution in hominids: Are we at the end of the road? In D. Falk & K. R. Gibson (Eds.), Evolutionary anatomy of the primate cerebral cortex (pp. 113–127). Cambridge: Cambridge University Press.Google Scholar
  59. Houzel, J. C., & Milleret, C. (1999). Visual inter-hemispheric processing: Constraints and potentialities set by axonal morphology. Journal de Physiologie, 93, 271–284.Google Scholar
  60. Hutsler, J. J., Love, T., & Zhang, H. (2007). Histological and magneticresonance imaging assessment of cortical layering and thickness in autism spectrum disorders. Biological Psychiatry, 61, 449–457. doi: 10.1016/j.biopsych.2006.01.015.PubMedCrossRefGoogle Scholar
  61. Innocenti, G. M. (1986). General organization of callosal connections in the cerebral cortex. In E. G. Jones (Ed.), Cerebral cortex, vol. 5: Sensory-motor area and aspects of cortical connectivity (pp. 291–353). New York: Springer.Google Scholar
  62. Kaas, J. H. (2004). Evolution of somatosensory and motor cortex in primates. The Anatomical Record, 281A, 1148–1156. doi: 10.1002/ar.a.20120.CrossRefGoogle Scholar
  63. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1, 321–331. doi: 10.1007/BF00133570.CrossRefGoogle Scholar
  64. Keller, T. A., Kana, R. K., & Just, M. A. (2007). A developmental study of the structural integrity of white matter in autism. NeuroReport, 18, 23–27. doi: 10.1097/01.wnr.0000239965.21685.99.PubMedCrossRefGoogle Scholar
  65. Kuida, K., Zheng, T. S., Na, S., Kuang, C. Y., Yang, D., Karasuyama, H., et al. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature, 384, 368–372. doi: 10.1038/384368a0.PubMedCrossRefGoogle Scholar
  66. Lainhart, J. E., Lazar, M., Bigler, E. D., & Alexander, A. (2005). The brain during life in autism: Advances in neuroimaging research. In M. F. Casanova (Ed.), Recent developments in autism research (pp. 57–108). New York: Nova Biomedical.Google Scholar
  67. Levitt, J. G., Blanton, R. E., Smalley, S., Thompson, P. M., Guthrie, D., McCracken, J. T., et al. (2003). Cortical sulcal maps in autism. Cerebral Cortex (New York, N.Y.), 13, 728–735. doi: 10.1093/cercor/13.7.728.CrossRefGoogle Scholar
  68. Luders, E., Thompson, P. M., Narr, K. L., Toga, A. W., Lancke, L., & Gaser, C. (2006). A curvature-based approach to estimate local gyrification on the cortical surface. NeuroImage, 29, 1224–1230. doi: 10.1016/j.neuroimage.2005.08.049.PubMedCrossRefGoogle Scholar
  69. Mariotti, P., Iuvone, L., Torrioli, M. G., & Silveri, M. C. (1998). Linguistic and non-linguistic abilities in a patient with early left hemispherectomy. Neuropsychologia, 36, 1303–1312. doi: 10.1016/S0028-3932(98)00031-1.PubMedCrossRefGoogle Scholar
  70. Moses, P., Courchesne, E., Stiles, J., Trauner, D., Egaas, B., & Edwards, E. (2000). Regional size reduction in the human corpus callosum following pre- and perinatal brain injury. Cerebral Cortex (New York, N.Y.), 10, 1200–1210. doi: 10.1093/cercor/10.12.1200.CrossRefGoogle Scholar
  71. Neal, J., Takahashi, M., Silva, M., Tiao, G., Walsh, C. A., & Sheen, V. L. (2007). Insights into the gyrification of developing ferret brain by magnetic resonance imaging. Journal of Anatomy, 210, 66–77. doi: 10.1111/j.1469-7580.2006.00674.x.PubMedCrossRefGoogle Scholar
  72. Nordahl, C. W., Dierker, D., Mostafavi, I., Schumann, C. M., Rivera, S. M., Amaral, D. G., et al. (2007). Cortical folding abnormalities in autism revealed by surface-based morphometry. The Journal of Neuroscience, 27, 11725–11735. doi: 10.1523/JNEUROSCI.0777-07.2007.PubMedCrossRefGoogle Scholar
  73. Olivares, R., Michalland, S., & Aboitiz, F. (2000). Cross-species and intraspecies morphometric analysis of the corpus callosum. Brain, Behavior and Evolution, 55, 37–43. doi: 10.1159/000006640.PubMedCrossRefGoogle Scholar
  74. Ono, M., Kubik, S., & Abernathey, C. D. (1990). Atlas of cerebral sulci. New York: Thieme.Google Scholar
  75. Piven, J., Arndt, S., Bailey, J., & Andreasen, N. (1996). Regional brain enlargement in autism: A magnetic resonance imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 35, 530–536.PubMedGoogle Scholar
  76. Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreason, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. The American Journal of Psychiatry, 152, 1145–1149.PubMedGoogle Scholar
  77. Prothero, J. W., & Sundsten, J. W. (1984). Folding of the cerebral cortex in mammals: A scaling model. Brain, Behavior and Evolution, 24, 152–167. doi: 10.1159/000121313.PubMedCrossRefGoogle Scholar
  78. Radinsky, L. (1967). Relative brain size: A new measure. Science, 155, 836–838. doi: 10.1126/science.155.3764.836.PubMedCrossRefGoogle Scholar
  79. Rakic, P. (1988). The specification of cerebral cortical areas: The radial unit hypothesis. Science, 241, 928–931. doi: 10.1126/science.3291116.CrossRefGoogle Scholar
  80. Rakic, P. (1995). One small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution. Trends in Neurosciences, 18, 383–388. doi: 10.1016/0166-2236(95)93934-P.PubMedCrossRefGoogle Scholar
  81. Rilling, J. K., & Insel, T. R. (1999). The primate neocortex in comparative perspective using magnetic resonance imaging. Journal of Human Evolution, 37, 191–223. doi: 10.1006/jhev.1999.0313.PubMedCrossRefGoogle Scholar
  82. Ringo, J. L. (1991). Neuronal interconnection as a function of brain size. Brain, Behavior and Evolution, 38, 1–6. doi: 10.1159/000114375.PubMedCrossRefGoogle Scholar
  83. Seldon, H. L. (1981). Structure of human auditory cortex, II: Axon distributions and morphological correlates of speech perception. Brain Research, 229, 295–310. doi: 10.1016/0006-8993(81)90995-1.PubMedCrossRefGoogle Scholar
  84. Shang, F., Ashwell, K. W. S., Marotte, L. R., & Waite, P. M. E. (1997). Development of commisural neurons in the wallaby (Macropus eugenii). The Journal of Comparative Neurology, 387, 507–523. doi:10.1002/(SICI)1096-9861(19971103)387:4<507::AID-CNE3>3.0.CO;2-6.PubMedCrossRefGoogle Scholar
  85. Sidman, R. L., & Rakic, P. (1982). Development of the human central nervous system. In W. Haymaker & A. D. Adams (Eds.), Histology and histopathology of the nervous system (pp. 3–145). Springfield, Ill: Charles C. Thomas.Google Scholar
  86. Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., et al. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 158–159.Google Scholar
  87. Szatmari, P., Bremner, R., & Nagy, J. (1989). Asperger’s syndrome: A review of clinical features. Canadian Journal of Psychiatry, 34, 554–560.Google Scholar
  88. Tarui, T., Takahashi, T., Nowakowski, R. S., Hayes, N. L., Bhide, P. G., & Caviness, V. S. (2005). Overexpression of p27Kip1, probability of cell cycle exit, and laminar destination of neocortical neurons. Cerebral Cortex (New York, N.Y.), 15, 1343–1355. doi: 10.1093/cercor/bhi017.CrossRefGoogle Scholar
  89. Vargas, D., Nascimbene, C., Krishnan, C., Zimmerman, A., & Pardo, C. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57, 67–81. doi: 10.1002/ana.20315.PubMedCrossRefGoogle Scholar
  90. Welker, W. (1990). Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. In E. G. Jones & A. Peters (Eds.), Comparative structure and evolution of cerebral cortex (pp. 3–136). New York: Plenum Press.Google Scholar
  91. Zilles, K., Armstrong, E., Moser, K. H., & Schleicher, A. (1989). Gyrification in the cerebral cortex of primates. Brain, Behavior and Evolution, 34(3), 143–150. doi: 10.1159/000116500.PubMedCrossRefGoogle Scholar
  92. Zilles, K., Armstrong, E., Schleicher, A., & Kretschmann, H. J. (1988). The human pattern of gyrification in the cerebral cortex. Anatomy and Embryology, 179, 173–179. doi: 10.1007/BF00304699.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Manuel F. Casanova
    • 1
    Email author
  • Ayman El-Baz
    • 2
  • Meghan Mott
    • 1
  • Glenn Mannheim
    • 3
  • Hossam Hassan
    • 4
  • Rachid Fahmi
    • 4
  • Jay Giedd
    • 5
  • Judith M. Rumsey
    • 6
    • 7
  • Andrew E. Switala
    • 1
  • Aly Farag
    • 4
  1. 1.Department of PsychiatryUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of BioengineeringUniversity of LouisvilleLouisvilleUSA
  3. 3.Division of Psychiatry Products, Food and Drug AdministrationSilver SpringUSA
  4. 4.Department of Electrical and Computer EngineeringUniversity of LouisvilleLouisvilleUSA
  5. 5.Child Psychiatry BranchNational Institute of Mental HealthBethesdaUSA
  6. 6.Neurodevelopmental Disorders BranchNational Institute of Mental HealthBethesdaUSA
  7. 7.Division of Adult Translational ResearchNational Institute of Mental HealthBethesdaUSA

Personalised recommendations