Advertisement

Journal of Autism and Developmental Disorders

, Volume 39, Issue 1, pp 97–104 | Cite as

Cortical Serotonin Type-2 Receptor Density in Parents of Children with Autism Spectrum Disorders

  • Jeremy GoldbergEmail author
  • George M. Anderson
  • Lonnie Zwaigenbaum
  • Geoffrey B. C. Hall
  • Claude Nahmias
  • Ann Thompson
  • Peter Szatmari
Original Paper

Abstract

Parents (N = 19) of children with autism spectrum disorders (ASD) and adult controls (N = 17) underwent positron emission tomography (PET) using [18F]setoperone to image cortical serotonin type-2 (5-HT2) receptors. The 5-HT2 binding potentials (BPs) were calculated by ratioing [18F]setoperone intensity in regions of interest (ROI) to cerebellar intensity. Cortical 5-HT2 BPs were significantly lower in parents compared to controls and platelet 5-HT levels were significantly negatively correlated with cortical 5-HT2 BP in parents. Lower cortical 5-HT2 receptor density in parents of children with ASD is consistent with reports of diminished 5-HT2 expression and functioning in individuals with ASD. Further research should examine the relationship of reduced 5-HT2 receptor expression to underlying causation and to clinical and neurochemical correlates of autistic behavior.

Keywords

Autism Positron emission tomography Setoperone [18Fluoro]-setoperone Serotonin Endophenotype 

Notes

Acknowledgements

This project has been supported by the National Alliance for Autism Research (NAAR; grant #98-179) and the Hamilton Health Sciences Research Foundation. Drs. Goldberg, Szatmari, and Zwaigenbaum have been supported by fellowship awards from the Ontario Mental Health Research Foundation (OMHF). Dr. Anderson acknowledges support of the Korczak Foundation for Autism Research and the Gettner Research Fund. Dr. Raman Chirakal and Dr. J. J. Chen are gratefully acknowledged for the production of setoperone. Dr. Karen Gulenchyn, Dr. Troy Farncombe, Margo Thompson and the PET technologists are thanked for their assistance in acquiring the data. We would like to thank Heather Allin, Eric Duku and Ann Thompson for their advice and efforts in assisting with this study. A special thanks to the parents for participating and for their ongoing support of this and related studies.

References

  1. American Psychiatric Press. (1994). Diagnostic and statistical manual of mental disorders 4th edition (DSM-IV). Washington, DC: American Psychiatric Association.Google Scholar
  2. Anderson, G. M. (2002). Genetics of childhood disorders: XLV. Autism, Part 4: Serotonin in autism. Journal of the American Academy of Child and Adolescent Psychiatry, 41, 1513–1516. doi: 10.1097/00004583-200212000-00025.PubMedCrossRefGoogle Scholar
  3. Anderson, G. M., Feibel, F. C., & Cohen, D. J. (1987). Determination of serotonin in whole blood, platelet-rich plasma, platelet-poor plasma and plasma ultra-filtrate. Life Sciences, 40, 1063–1070. doi: 10.1016/0024-3205(87)90568-6.PubMedCrossRefGoogle Scholar
  4. Arranz, B., Eriksson, A., Mellerup, E., Plenge, P., & Marcusson, J. (1993). Effect of aging on human cortical pre and post synaptic serotonin binding sites. Brain Research, 620, 163–166. doi: 10.1016/0006-8993(93)90286-V.PubMedCrossRefGoogle Scholar
  5. Bailey, A., Le Couteur, A., Gottesman, I., Bolten, P., Simonoff, E., Yuzda, E., et al. (1995). Autism is a strongly genetic disorder: Evidence from a British twin study. Psychological Medicine, 25, 63–77.PubMedCrossRefGoogle Scholar
  6. Baron-Cohen, S., Knickmeyer, R. C., & Belmonte, M. K. (2005). Sex differences in the brain: Implications for explaining autism. Science, 310, 819–823. doi: 10.1126/science.1115455.PubMedCrossRefGoogle Scholar
  7. Baron-Cohen, S., Ring, H., Chitnis, X., Wheelwright, S., Gregory, L., et al. (2006). fMRI of parents of children with Asperger’s Syndrome: A pilot study. Brain and Cognition, 61, 122–130. doi: 10.1016/j.bandc.2005.12.011.PubMedCrossRefGoogle Scholar
  8. Bhagwagar, Z., Hinz, R., Taylor, M., Fancy, S., Cowen, P., & Grasby, P. (2006). Increased 5-HT(2A) receptor binding in euthymic, medication-free patients recovered from depression: A positron emission study with [(11)C]MDL 100, 907. The American Journal of Psychiatry, 163, 1580–1587. doi: 10.1176/appi.ajp. 163.9.1580.PubMedCrossRefGoogle Scholar
  9. Blin, J., Sette, G., Fiorelli, M., Bletry, O., Elghozi, J. L., et al. (1990). A method for the in vivo investigation of the serotonergic 5-HT2 receptors in the human cerebral cortex using positron emission tomography and 18F-labeled setoperone. Journal of Neurochemistry, 54, 1744–1754. doi: 10.1111/j.1471-4159.1990.tb01229.x.PubMedCrossRefGoogle Scholar
  10. Bolton, P., Macdonald, H., Pickles, A., Rios, P., Goode, S., Crowson, M., et al. (1994). A case–control family history study of autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 35, 877–900. doi: 10.1111/j.1469-7610.1994.tb02300.x.PubMedCrossRefGoogle Scholar
  11. Bonnin, A., Torii, M., Wang, L., Rakic, P., & Levitt, P. (2007). Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nature Neuroscience, 10, 588–597. doi: 10.1038/nn1896.PubMedCrossRefGoogle Scholar
  12. Burnet, P. W., Eastwood, S. L., & Harrison, P. J. (1996). 5-HT1A and 5-HT2A receptor mRNAs and binding densities are differentially altered in schizophrenia. Neuropsychophamacology, 15, 422–455.Google Scholar
  13. Chandana, S. R., Behen, M. E., Juhasz, C., Muzik, O., Rothermel, R. D., Mangner, T. J., et al. (2005). Significance of abnormalities in developmental trajectory and asymmetry of cortical serotonin synthesis in autism. International Journal of Developmental Neuroscience, 23, 171–182. doi: 10.1016/j.ijdevneu.2004.08.002.PubMedCrossRefGoogle Scholar
  14. Cho, I. H., Yoo, H. J., Park, M., Lee, Y. S., & Kim, S. A. (2008). Family-based association study of 5-HTTLPR and the 5-HT2A receptor gene polymorphisms with autism spectrum disorder in Korean trios. Brain Research, 1139, 34–41. doi: 10.1016/j.brainres.2007.01.002.CrossRefGoogle Scholar
  15. Constantino, J. N., Davis, S. A., et al. (2003). Validation of a brief quantitative measure of autistic traits: Comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33, 427–433. doi: 10.1023/A:1025014929212.PubMedCrossRefGoogle Scholar
  16. Cook, E. H., Jr, Arora, R. C., Anderson, G. M., Berry-Kravis, E. M., Yan, S. Y., Yeoh, H. C., et al. (1993). Platelet serotonin studies in hyperserotonemic relatives of children with autistic disorder. Life Sciences, 52, 2005–2015. doi: 10.1016/0024-3205(93)90685-V.PubMedCrossRefGoogle Scholar
  17. Crouzel, C., Venet, M., Irie, G., Sanz, G., & Boullais, C. (1988). Labeling of a serotonergic ligand with 18-F Setoperone. Journal of Labelled Compounds and Radiopharmaceuticals, 25, 403–414. doi: 10.1002/jlcr.2580250407.CrossRefGoogle Scholar
  18. Danaceau, J. P., Anderson, G. M., McMahon, W. M., & Crouch, D. J. (2003). A liquid chromatographic-tandem mass spectrometric method for the analysis of serotonin and related indoles in human whole blood. Journal of Analytical Toxicology, 27, 440–444.PubMedGoogle Scholar
  19. Duvall, J. A., Lu, A., et al. (2007). A quantitative trait locus analysis of social responsiveness in multiplex autism families. The American Journal of Psychiatry, 164, 656–662. doi: 10.1176/appi.ajp. 164.4.656.PubMedCrossRefGoogle Scholar
  20. Eison, A. S., & Mullins, U. L. (1996). Regulation of central 5HT2A receptors: A review of in vivo studies. Behavioural Brain Research, 73, 177–181. doi: 10.1016/0166-4328(96)00092-7.PubMedCrossRefGoogle Scholar
  21. Epperson, C. N., Czarkowski, K. A., Ward-O’Brien, D., Weiss, E., Gueorguieva, R., Jatlow, P., et al. (2001). Maternal sertraline treatment and serotonin transport in breastfeeding mother-infant pairs. The American Journal of Psychiatry, 158, 1631–1637. doi: 10.1176/appi.ajp. 158.10.1631.PubMedCrossRefGoogle Scholar
  22. Fatemi, S. H., Stary, J. M., & Egan, E. A. (2002). Reduced blood levels of reelin as a vulnerability factor in pathophysiology of autistic disorder. Cellular and Molecular Neurobiology, 22, 139–152. doi: 10.1023/A:1019857620251.PubMedCrossRefGoogle Scholar
  23. Folstein, S. & Rutter, M. (1991). Family history interview for developmental disorders of cognition and social functioning (available from authors).Google Scholar
  24. Folstein, S. E., Santangelo, S. L., Gilman, S. E., Piven, J., Landa, R., Lainhart, J., et al. (1999). Predictors of cognitive test patterns in autism families. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 40, 1117–1128. doi: 10.1017/S0021963099004461.PubMedCrossRefGoogle Scholar
  25. Gotham, K., Risi, S., Pickles, A., & Lord, C. (2007). The Autism Diagnostic Observation Schedule: Revised algorithms for improved diagnostic validity. Journal of Autism and Developmental Disorders, 37, 613–627. doi: 10.1007/s10803-006-0280-1.PubMedCrossRefGoogle Scholar
  26. Gottesman, I. I., & Gould, T. D. (2003). The enodphontype concept in psychiatry: Etymology and strategic intentions. The American Journal of Psychiatry, 160, 636–645. doi: 10.1176/appi.ajp. 160.4.636.PubMedCrossRefGoogle Scholar
  27. Happe, F., Briskman, J., & Frith, U. (2001). Exploring the cognitive phenotype of autism: Weak “central coherence” in parents and siblings of children with autism: I. Experimental tests. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 42, 299–307. doi: 10.1017/S0021963001006916.PubMedCrossRefGoogle Scholar
  28. Happe, F., Ronald, A., & Plomin, R. (2006). Time to give up on a single explanation for autism. Nature Neuroscience, 9, 1218–1220. doi: 10.1038/nn1770.PubMedCrossRefGoogle Scholar
  29. Herault, J., Petit, E., Martineau, J., Cherpi, C., Perrot, A., Barthelemy, C., et al. (1996). Serotonin and autism: Biochemical and molecular biology features. Psychiatry Research, 65, 33–43. doi: 10.1016/0165-1781(96)02882-X.PubMedCrossRefGoogle Scholar
  30. Hurley, R. S., Losh, M., et al. (2007). The broad autism phenotype questionnaire. Journal of Autism and Developmental Disorders, 37, 1679–1690. doi: 10.1007/s10803-006-0299-3.PubMedCrossRefGoogle Scholar
  31. Jakab, R. L., & Goldman-Rakic, P. S. (1998). 5-Hydroxytryptamine serotonin receptors in the primate cerebral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in the pyramidal cell apical dendrites. Proceedings of the National Academy of Sciences of the USA, 95, 735–740. doi: 10.1073/pnas.95.2.735.PubMedCrossRefGoogle Scholar
  32. Janusonis, S., Gluncic, V., & Rakic, P. (2004). Early serotonergic projections to Cajal-Retzius cells: Relevance for cortical development. The Journal of Neuroscience, 24, 1652–1659. doi: 10.1523/JNEUROSCI.4651-03.2004.PubMedCrossRefGoogle Scholar
  33. Kapur, S., Jones, C., DaSilva, J., Wilson, A., & Houle, S. (1997). Reliability of a simple non-invasive method for the evaluation of 5-HT2 receptors using (18F) setoperone PET imaging. Nuclear Medicine Communications, 18, 395–399. doi: 10.1097/00006231-199705000-00002.PubMedCrossRefGoogle Scholar
  34. Kolevzon, A., Mathewson, K. A., & Hollander, E. (2006). Selective serotonin reuptake inhibitors in autism: A review of efficacy and tolerability. The Journal of Clinical Psychiatry, 67, 407–414.PubMedCrossRefGoogle Scholar
  35. Kugaya, A., Epperson, C. N., Zoghbi, S., van Dyck, C. H., Hou, Y., Fujita, M., et al. (2003). Increase in prefrontal cortex serotonin2A receptors following estrogen treatment in postmenopausal women. The American Journal of Psychiatry, 160, 522–524. doi: 10.1176/appi.ajp. 160.8.1522.CrossRefGoogle Scholar
  36. Lainhart, J. E., Ozonoff, S., Coon, H., Krasny, L., Dinh, E., Nice, J., et al. (2002). Autism, regression, and the broader autism phenotype. American Journal of Medical Genetics, 113, 231–237. doi: 10.1002/ajmg.10615.PubMedCrossRefGoogle Scholar
  37. Laruelle, M., Abi-Dargham, A., Casanova, M. F., Toti, R., Weinberger, D., & Kleinman, J. (1993). Selective abnormalities of prefrontal serotonergic receptors in schizophrenia: A postmortem study. Archives of General Psychiatry, 50, 810–818.PubMedGoogle Scholar
  38. Leboyer, M., Bellivier, F., Nosten-Bertrand, M., Jouvent, R., Pauls, D., Mallet, J., et al. (1998). Psychiatric genetics: Search for phenotypes. Trends in Neurosciences, 21, 102–105. doi: 10.1016/S0166-2236(97)01187-9.PubMedCrossRefGoogle Scholar
  39. Levine, M. (1986). Leiter international performance scale: A handbook. Los Angeles: Western Psychological Services.Google Scholar
  40. Lewis, R., Kapur, S., Jones, C., DaSilva, J., Brown, G., Wilson, A., et al. (1999). Serotonin 5-HT2 Receptors in Schizophrenia: A PET study using [18 F] setoperone in neuroleptic-naive patients and normal subjects. The American Journal of Psychiatry, 156, 72–78.PubMedGoogle Scholar
  41. Lopez-Figueroa, A. L., Norton, C. S., Lopez-Figueroa, M. O., Armellini-Dodel, D., Burke, S., Akil, H., et al. (2004). Serotonin 5-HT1A, 5-HT1B, and 5-HT2A receptor mRNA expression in subjects with major depression, bipolar disorder, and schizophrenia. Biological Psychiatry, 55, 225–233. doi: 10.1016/j.biopsych.2003.09.017.PubMedCrossRefGoogle Scholar
  42. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview—Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685. doi: 10.1007/BF02172145.PubMedCrossRefGoogle Scholar
  43. Losh, M., & Piven, J. (2007). Social-cognition and the broad autism phenotype: Identifying genetically meaningful phenotypes. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 48, 105–112. doi: 10.1111/j.1469-7610.2006.01594.x.PubMedCrossRefGoogle Scholar
  44. MacLean, J. E., Szatmari, P., Jones, M. B., Bryson, S. E., Mahoney, W. J., Bartolucci, G., et al. (1999). Familial factors influence level of functioning in pervasive developmental disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 38, 746–753. doi: 10.1097/00004583-199906000-00023.PubMedCrossRefGoogle Scholar
  45. Mann, J. J., Brent, D., & Arango, V. (2001). The neurobiology and genetics of suicide and attempted suicide: A focus on the serotonergic system. Neuropsychopharmacology, 24, 467–477. doi: 10.1016/S0893-133X(00)00228-1.PubMedCrossRefGoogle Scholar
  46. McBride, P. A., Anderson, G. M., Herzig, M., Sweeney, J., Kream, J., Cohen, D. J., et al. (1989). Serotonergic responsivity in male young adults with autistic disorder: Results of a pilot study. Archives of General Psychiatry, 46, 213–221.PubMedGoogle Scholar
  47. McBride, P. A., Anderson, G. M., & Shapiro, T. (1996). Autism research: Bringing together approaches to pull apart the disorder. Archives of General Psychiatry, 53, 980–983.PubMedGoogle Scholar
  48. Meltzer, C. C., Price, J. C., Mathis, C. A., Greer, P. J., Cantwell, M. N., Houck, P. R., et al. (1999). PET imaging of serotonin type 2A receptors in late life neuropsychiatric disorders. The American Journal of Psychiatry, 156, 1871–1878.PubMedGoogle Scholar
  49. Meyer, J., Kapur, S., Houle, S., DaSilva, J., Owczarek, B., Brown, G., et al. (1999). Prefrontal cortex 5-HT2 receptors in depression: An [18F] setoperone PET imaging study. The American Journal of Psychiatry, 156, 1029–1034.PubMedGoogle Scholar
  50. Minton, M. A., Sheline, Y. I., Moerlein, S. M., Vlassenk, A. G., Huang, Y., & Snyder, A. Z. (2003). Decreased hippocampal 5-HT2a receptor binding in major depression: In vivo measurement with [18F]altanserin positron emission tomography. Biological Psychiatry, 55, 217–224. doi: 10.1016/j.biopsych.2003.08.015.CrossRefGoogle Scholar
  51. Mulder, E. J., Anderson, G. M., Kema, I. P., de Bildt, A., van Lang, N. D. J., den Boer, J. A., et al. (2004). Platelet serotonin in pervasive developmental disorders and mental retardation: Diagnostic group differences, within-group distribution and behavioral correlates. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 491–499. doi: 10.1097/00004583-200404000-00016.PubMedCrossRefGoogle Scholar
  52. Murphy, D. G., Schmitz, N., Toal, F., Murphy, K., Daly, E., Erlandsson, K., et al. (2006). Cortical 5-HT2A receptor binding and social communication in adults with Asperger’s syndrome: An in vivo SPECT study. The American Journal of Psychiatry, 163, 934–936. doi: 10.1176/appi.ajp. 163.5.934.PubMedCrossRefGoogle Scholar
  53. Murphy, M., Bolton, P. F., Pickles, A., Fombonne, E., Piven, J., & Rutter, M. (2000). Personality traits of the relatives of autistic probands. Psychological Medicine, 30, 1411–1424. doi: 10.1017/S0033291799002949.PubMedCrossRefGoogle Scholar
  54. Palmen, S. J., Hulshoff Pol, H. E., Kemner, C., Schnack, H. G., Sitskoorn, M. M., Appels, M. C., et al. (2005). Brain anatomy in non-affected parents of autistic probands: A MRI study. Psychological Medicine, 35, 1411–1420. doi: 10.1017/S0033291705005015.PubMedCrossRefGoogle Scholar
  55. Pazos, A., Probst, A., & Palacio, J. M. (1987). Serotonin receptors in the human brain—iv. autoradiographic mapping of serotonin-2 receptors. NeuroImage, 21, 123–139.Google Scholar
  56. Peterson, E., Schmidt, G. L., Tregellas, J. R., Winterrowd, E., Kopelioff, L., Hepburn, S., et al. (2006). A voxel-based morphometry study of gray matter in parents of children with autism. Neuroreport, 17, 1289–1292. doi: 10.1097/01.wnr.0000233087.15710.87.PubMedCrossRefGoogle Scholar
  57. Petit-Tabou, M. C., Landeau, B., Osmont, A., Tillet, I., Barre, L., & Baron, J. C. (1996). Estimation of neo-cortical serotonin-2 receptor binding potential by single dose fluorine-18-Setoperone kinetic PET data analysis. Journal of Nuclear Medicine, 37, 95–104.Google Scholar
  58. Piven, J., Palmer, P., Jacobi, D., Childress, D., & Arndt, S. (1997). Broader autism phenotype: Evidence from a family history study of multiple-incidence autism families. The American Journal of Psychiatry, 154, 185–190.PubMedGoogle Scholar
  59. Polleux, F., & Lauder, J. M. (2004). Toward a developmental neurobiology of autism. Mental Retardation and Developmental Disabilities Research Reviews, 10, 303–317. doi: 10.1002/mrdd.20044.PubMedCrossRefGoogle Scholar
  60. Rapin, I. (1997). Autism. The New England Journal of Medicine, 337, 97–104. doi: 10.1056/NEJM199707103370206.PubMedCrossRefGoogle Scholar
  61. Rojas, D. C., Smith, J. A., Benkers, T. L., Camou, S. L., Reite, M. L., & Rogers, S. J. (2004). Hippocampus and amygdala volumes in parents of children with autistic disorder. The American Journal of Psychiatry, 161, 2038–2044. doi: 10.1176/appi.ajp. 161.11.2038.PubMedCrossRefGoogle Scholar
  62. Ruser, T. F., Arin, D., Dowd, M., Putnam, S., Winklosky, B., Rosen-Sheidley, B., et al. (2008). Communicative competence in parents of children with autism and parents of children with specific language impairment. Journal of Autism and Developmental Disorders, 37, 1323–1336. doi: 10.1007/s10803-006-0274-z.CrossRefGoogle Scholar
  63. Rutter, M. (1999). Autism: Two-way interplay between research and clinical work. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 40, 169–188. doi: 10.1017/S0021963098003461.PubMedCrossRefGoogle Scholar
  64. Schain, R. J., & Freedman, D. X. (1961). Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. The Journal of Pediatrics, 58, 315–320. doi: 10.1016/S0022-3476(61)80261-8.PubMedCrossRefGoogle Scholar
  65. Skuse, D. H. (2001). Endophenotypes and child psychiatry. The British Journal of Psychiatry, 178, 395–396. doi: 10.1192/bjp. 178.5.395.PubMedCrossRefGoogle Scholar
  66. Sparrow, S., Bala, D., & Cichetti, D. (1984). Vineland Adaptive Behaviour Scales (Survey Form). Circle Pines, MN: American Guidance Service.Google Scholar
  67. Stone, W. L., McMahon, C. R., Yoder, P. J., & Walden, T. A. (2008). Early social-communicative and cognitive development of younger siblings of children with autism spectrum disorders. Archives of Pediatrics and Adolescent Medicine, 161, 384–390. doi: 10.1001/archpedi.161.4.384.CrossRefGoogle Scholar
  68. Szatmari, P., Maziade, M., Zwaigenbaum, L., Merette, C., Roy, M. A., Joober, R., et al. (2007). Informative phenotypes for genetic studies of psychiatric disorders. American Journal of Medical Genetics. Part B, 144, 581–588.CrossRefGoogle Scholar
  69. Veenstra-Vander-Weele, J., Kim, S., Lord, C., Courchesne, R., Akshoomoff, N., Levinthal, B. L., et al. (2002). Transmission disequillibrium studies of the serotonin 5ht2a receptor gene (htr2a) in autism. American Journal of Medical Genetics, 114, 277–283. doi: 10.1002/ajmg.10192.CrossRefGoogle Scholar
  70. Whitaker-Azmitia, P. (2001). Serotonin and brain development: Role in human developmental diseases. Brain Research Bulletin, 56, 479–485. doi: 10.1016/S0361-9230(01)00615-3.PubMedCrossRefGoogle Scholar
  71. Yatham, L. N., Liddle, P. F., Dennie, J., Shiah, I. S., Adam, M. J., Lane, C. J., et al. (1999). Decrease in brain serotonin 2 receptor binding in patients with major depression following desipramine treatment: A positron emission tomography study with F18-labeled setoperone. Archives of General Psychiatry, 56, 705–711. doi: 10.1001/archpsyc.56.8.705.PubMedCrossRefGoogle Scholar
  72. Young, S. N., Leyton, M., & Benkelfat, C. (1999). PET studies of serotonin synthesis in the human brain. Advances in Experimental Medicine and Biology, 467, 11–18.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jeremy Goldberg
    • 1
    • 2
    Email author
  • George M. Anderson
    • 3
  • Lonnie Zwaigenbaum
    • 4
    • 5
  • Geoffrey B. C. Hall
    • 1
  • Claude Nahmias
    • 6
  • Ann Thompson
    • 7
    • 8
  • Peter Szatmari
    • 1
  1. 1.Department of Psychiatry and Behavioral NeurosciencesMcMaster UniversityHamiltonCanada
  2. 2.Hamilton Health SciencesHamiltonCanada
  3. 3.Child Study CenterYale University School of MedicineNew HavenUSA
  4. 4.Department of PediatricsMcMaster UniversityHamiltonCanada
  5. 5.Department of PediatricsUniversity of AlbertaEdmontonCanada
  6. 6.Department of Nuclear MedicineMcMaster UniversityHamiltonCanada
  7. 7.Offord Centre for Child StudiesHamiltonCanada
  8. 8.Hamilton Health SciencesHamiltonCanada

Personalised recommendations