Skip to main content

Advertisement

Log in

Subjective Perceptual Distortions and Visual Dysfunction in Children with Autism

  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Case reports and sensory inventories suggest that autism involves sensory processing anomalies. Behavioral tests indicate impaired motion and normal form perception in autism. The present study used first-person accounts to investigate perceptual anomalies and related subjective to psychophysical measures. Nine high-functioning children with autism and nine typically-developing children were given a questionnaire to assess the frequency of sensory anomalies, as well as psychophysical tests of visual perception. Results indicated that children with autism experience increased perceptual anomalies, deficits in trajectory discrimination consistent with dysfunction in the cortical dorsal pathway or in cerebellar midsagittal vermis, and high spatial frequency contrast impairments consistent with dysfunctional parvocellular processing. Subjective visual hypersensitivity was significantly related to greater deficits across vision tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The revised instrument is available from the authors upon request.

REFERENCES

  • Belmonte M. K., Yurgelun-Todd D. A., (2003). Functional anatomy of impaired selective attention and compensatory processing in autismCognitive Brain Research 17, 651–664

    Article  PubMed  Google Scholar 

  • Bookstein F., Sampson P. D., Streissguth A. P., Barr H. M., (1996). Exploiting redundant measurement of dose and developmental outcome: New methods from the behavioral teratology of alcoholDevelopmental Psychology, 32, 404–415

    Article  Google Scholar 

  • Brenner C. A., Wilt M. A., Lysaker P. H., O’Donnell B. F., (2003). Psychometrically matched tasks of discrimination and recognition performance in schizophrenia spectrum disordersJournal of Abnormal Psychology 112, 28–37

    Article  PubMed  Google Scholar 

  • Bunney W. E., Jr., Hetrick W. P., Bunney B. G., Patterson J. V., Jin. Y., Jr., Potkin S. G., Sandman C. A., (1999). Structured interview for assessing perceptual anomalies (SIAPA)Schizophrenia Bulletin, 25, 577–592

    PubMed  Google Scholar 

  • Chapman L. J., Chapman J. P., (1978). The measurement of differential deficitJournal of Psychiatric Research 14, 303–311

    Article  PubMed  Google Scholar 

  • Courchesne E., (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in autismCurrent Opinion in Neurobiology 7: 269–278

    Article  PubMed  Google Scholar 

  • Dupont P., Orban G. A., de Bruyn B., Verbruggen A., Mortelmans L., (1994). Many areas in the human brain respond to visual motionJournal of Neurophysiology, 72, 1420–1424

    PubMed  Google Scholar 

  • Farmer C. M., O’Donnell B. F., Niznikiewicz M. A., Voglmaier M. M., McCarley R. W., Shenton M. E., (2000). Visual perception and working memory in schizotypal personality disorderThe American Journal of Psychiatry 157, 781–786

    Article  PubMed  Google Scholar 

  • Gillberg C., Coleman M., (2000). The Biology of Autistic Syndromes, 3rd Ed. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Grandin, T. (2000). My experiences with visual thinking sensory problems and communication difficulties. http://www.autism.org/contents.html#temple

  • Grandin T., (1992). An inside view of autism. In: Schopler E., Mesibov G. B., (Eds.) High-functioning individuals with autism. New York, NY: Plenum Press. pp. 105–126

    Google Scholar 

  • Haas R. H., Townsend, J., Courchesne E., Lincoln A. J., Schreibman L., Yeung-Courchesne R., (1996). Neurologic abnormalities in infantile autismJournal of Child Neurology 11, 84–92

    Article  PubMed  Google Scholar 

  • Hautzel H., Taylor J. G., Krause B. J., Krause B. J., Schmitz N., Tellmann L., Ziemons K., Shah N. J., Herzog H., Muller-Gartner H. W., (2001). The motion aftereffect: More than area V5/MT? Evidence from 15O-butanol PET studiesBrain Research 892, 281–292

    Article  PubMed  Google Scholar 

  • Kientz M. A., Dunn W., (1997). A comparison of the performance of children with and without autism on the sensory profileThe American Journal of Occupational Therapy 51, 530–537

    PubMed  Google Scholar 

  • Levitt H., (1970). Transformed up-down methods in psychoacousticsThe Journal of the Acoustical Society of America 49, 467–477

    Article  Google Scholar 

  • Livingstone M. S., Hubel D. H., (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perceptionScience 240, 740–749

    Article  PubMed  Google Scholar 

  • Lord C., Rutter M., Le Couteur A., (1994). Autism diagnostic interview-revised, a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disordersJournal of Autism and Developmental Disorders 24, 659–685

    Article  PubMed  Google Scholar 

  • Merigan W. H., Byrne C. E., Maunsell J. H. R., (1991a). Does primate motion perception depend on the magnocellular pathway?The Journal of Neuroscience 11, 3422–3429

    Google Scholar 

  • Merigan W. H., Katz L. M., Maunsell J. H. R., (1991b). The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeysThe Journal of Neuroscience 11, 994–1001

    Google Scholar 

  • Merigan W. H., Maunsell J. H. R., (1990). Macaque vision after magnocellular lateral geniculate lesionsVisual Neuroscience 5, 347–352

    Article  PubMed  Google Scholar 

  • Merigan W. H., Maunsell J. H. R., (1993). How parallel are the primate visual pathways?Annual Review of Neuroscience 16, 369–402

    Article  PubMed  Google Scholar 

  • Milne E., Swettenham J., Hansen P., Campbell R., Jeffries H., Plaisted K., (2002). High motion coherence thresholds in children with autismJournal of Child Psychology, Psychiatry and Allied Disciplines 32, 255–263

    Article  Google Scholar 

  • Mottron L., Belleville S., Menard E., (1999). Local bias in autistic subjects as evidenced by graphic tasks: Perceptual hierarchization or working memory deficit?Journal of Child Psychology, Psychiatry and Allied Disciplines 40, 743–755

    Article  Google Scholar 

  • Muller R.A., Kleinhans N., Kemmotsu N., Pierce K., Courchesne E., (2003). Abnormal variability and distribution of functional maps in autism: An FMRI study of visuomotor learningAmerican Journal of Psychiatry 160, 1847–1862

    Article  PubMed  Google Scholar 

  • Nawrot M., Rizzo M., (1998). Chronic motion perception deficits from midline cerebellar lesions in humanVision Research 38, 2219–2224

    Article  PubMed  Google Scholar 

  • Newsome W. T., Pare E. B., (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT)The Journal of Neuroscience 8, 2201–2211

    PubMed  Google Scholar 

  • O’Donnell B. F., McCarley R. W., Potts G. F., Salisbury D. F., Nestor P. G., Hirayasu Y., Niznikiewicz M. A., Barnard J., Shen Z. J., Weinstein D. W., Bookstein F., Shenton M. E., (1999). Identification of neural circuits underlying P300 abnormalities in schizophrenia. Psychophysiology 36, 388–398

    Article  PubMed  Google Scholar 

  • O’Riordan M., Plaisted K., (2001). Enhanced discrimination in autismThe Quarterly Journal of Experimental Psychology 54a, 961–979

    Google Scholar 

  • Ornitz E. M., Guthrie D., Farley A. H., (1977). The early development of autistic childrenJournal of Autism and Childhood Schizophrenia 7, 207–229

    Article  PubMed  Google Scholar 

  • Pierce K., Courchesne E., (2001). Evidence for a cerebellar role in reduced exploration and stereotyped behavior in autismBiological Psychiatry 49, 655–664

    Article  PubMed  Google Scholar 

  • Shadlen M. N., Newsome W. T., (2001). Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkeyJournal of Neurophysiology 86, 1916–1936

    PubMed  Google Scholar 

  • Skottun B. C., (2000). The magnocellular deficit theory of dyslexia: The evidence from contrast sensitivityVision Research, 40, 111–127

    Article  PubMed  Google Scholar 

  • Spencer J., O’Brien J., Riggs K., Braddick O., Atkinson J., Wattam-Bell J., (2000). Motion processing in autism: Evidence for a dorsal stream deficiencyNeuroReport 11, 2765–2767

    Article  PubMed  Google Scholar 

  • Stehli A., (1991). The sound of a miracle. New York, NY: Doubleday

    Google Scholar 

  • Talay-Ongan A., Wood K., (2000). Unusual sensory sensitivities in autism: A possible crossroadsThe International Journal of Disability, Development and Education 47, 201–212

    Article  Google Scholar 

  • The Psychological Corporation (1991). The wechsler intelligence scale for children, third edition. San Antonio, TX

    Google Scholar 

  • Townsend J., Harris N. S., Courchesne E., (1996). Visual attention abnormalities in autism: Delayed orienting to locationJournal of the International Neuropsychological Society 2, 541–550

    Article  PubMed  Google Scholar 

  • Townsend J., Westerfield M., Leaver E., Makeig S., Jung T., Pierce K., Courchesne E., (2001). Event-related brain response abnormalities in autism: Evidence for impaired cerebello-frontal spatial attention networksCognitive Brain Research 11, 127–45

    Article  PubMed  Google Scholar 

  • Tyler C., (1991). Analysis of normal flicker sensitivity and its variability in the visuogram testInvestigative Opthalmology and Visual Science 32, 2552–2560

    Google Scholar 

  • Tyler C., (1995). The morphonome image psychophysics software and calibrator for macintosh systems, 3.5.2.1 ed. San Francisco, CA: The Smith-Kettlewell Eye Institute

    Google Scholar 

  • Ungerleider L. G., Mishkin M., (1982). Two cortical visual systems, analysis of visual behavior. Cambridge, MA: MIT Press. pp. 549–586

    Google Scholar 

  • Williams D., (1994). Nobody nowhere. New York, NY: Avon Books

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by a National Defense Science and Engineering Graduate Fellowship, NIMH grants (RO1 MH62150-01; RO3 MH63112-01) awarded to Brian F. O’Donnell, the Indiana University Cognitive Science Program for Marcia B. Bockbrader, and the Indiana University Honors College for Rebecca A.O. Davis. We thank all the mothers and children who volunteered their time and their participation. We are grateful to Evan Davis for technical assistance regarding the psychophysical paradigms and P. Poskozim and W. Clevenger for assistance in testing participants. We acknowledge K. O’Bryan for her inspiration and guidance and E. Davis and E. Wilt for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian F. O’Donnell.

Additional information

A poster presentation of this study was presented at the conference of the Society of Biological Psychiatry, March 2002, in Philadelphia, Pennsylvania, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, R.A.O., Bockbrader, M.A., Murphy, R.R. et al. Subjective Perceptual Distortions and Visual Dysfunction in Children with Autism. J Autism Dev Disord 36, 199–210 (2006). https://doi.org/10.1007/s10803-005-0055-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-005-0055-0

KEY WORDS:

Navigation