Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio

Children with autistic spectrum disorder and controls performed tasks of coherent motion and form detection, and motor control. Additionally, the ratio of the 2nd and 4th digits of these children, which is thought to be an indicator of foetal testosterone, was measured. Children in the experimental group were impaired at tasks of motor control, and had lower 2D:4D than controls. There were no group differences in motion or form detection. However a sub-group of children with autism were selectively impaired at motion detection. There were significant relationships between motion coherence detection and motor control in both groups of children, and also between motion detection, fine motor control and 2D:4D in the group of children with autistic spectrum disorder.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Atkinson J., Braddick O., Anker S., Curran W., Andrew R., Wattam-Bell J., Braddick F.(2003). Neurobiological models of visuospatial cognition in children with Williams syndrome: measures of dorsal-stream and frontal functionDevelopmental Neuropsychology 23:139–172

    PubMed  Article  Google Scholar 

  2. Atkinson J., King J., Braddick O., Nokes L., Anker S., Braddick F.. (1997). A specific deficit of dorsal stream function in Williams’ syndrome Neuroreport 8:1919–1922

    PubMed  Article  Google Scholar 

  3. Bauman M. L., Kemper T. L. (1994). Neuroanatomic observations of the brain in autism In: Bauman M. L., Kemper T. L., (eds) The neurobiology of autism. John Hopkins University Press, Baltimore, pp. 119–145

    Google Scholar 

  4. Berthier M. L., Starkstein S. E., Leiguarda R.. (1990). Developmental cortical anomalies in Asperger’s syndrome: neuroradiological findings in two patientsJournal of Neuropsychiatry and Clinical Neurosciences 2:197–201

    PubMed  Google Scholar 

  5. Bertone A., Mottron L., Jelenic P., Faubert J.. (2003). Motion perception in autism: A “Complex” IssueJournal of Cognitive Neuroscience 15:1–8

    Article  Google Scholar 

  6. Blake R., Turner L. M., Smoski M. J., Pozdol S. L., Stone W. L.. (2003). Visual recognition of biological motion is impaired in children with autismPsychological Science 14(2):151–157

    PubMed  Article  Google Scholar 

  7. Britten K. H., Shalden M. N., Newsome W. T., Movshon J. A.. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performanceJournal of Neuroscience 12:4745–4765

    PubMed  Google Scholar 

  8. Brown W. M., Hines M., Fane B. A., Breedloves S. M.. (2002). Masculinized finger length patterns in human males and females with congenital adrenal hyperplasiaHormones and Behaviour 42:380–386

    Article  Google Scholar 

  9. Chaudhuri A., (1990). Modulation of the motion aftereffect by selective attentionNature 344:60–62

    PubMed  Article  Google Scholar 

  10. Cody H., Pelphrey K., Piven J.. (2002). Structural and functional magnetic resonance imaging of autismInternational Journal of Developmental Neuroscience 20:421–438

    PubMed  Article  Google Scholar 

  11. Courchesne E., (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in autismCurrent Opinion in Neurobiology 7:269–278

    PubMed  Article  Google Scholar 

  12. Courchesne E., Townsend J., Akshoomoff N. A., Saitoh O., Yeung-Courchesne R., Lincoln A. J., James, H. E., Haas, R. H., Schreibman, L., & Lau, L. (1994). Impairment in shifting attention in autistic and cerebellar patientsBehavioural Neuroscience 108: 848–865

    Article  Google Scholar 

  13. Dow R., Moruzzi G., (1958). The physiology and pathology of the cerebellumUniversity of Minnesota Press Minneapolis

    Google Scholar 

  14. Eden G., Vanmeter J., Rumsey J., Maisog J., Woods R., Zeffiro T., (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imagingNature 382: 222–233

    Article  Google Scholar 

  15. Fawcett A. J., Nicolson R. I., Dean P., (1996). Impaired performance of children with dyslexia on a range of cerebellar tasksAnnals of Dyslexia 46: 259–283

    Article  Google Scholar 

  16. Galaburda A. M., Menard M. T., Rosen G. D., (1994). Evidence for aberrant auditory anatomy in developmental dyslexiaProceedings of the National Academy of Science 91: 8010–8013

    Article  Google Scholar 

  17. Gepner B., Mestre D., (2002a). Brief Report: Postural reactivity to fast visual motion differentiates autistic children from children with Asperger syndromeJournal of Autism and Developmental Disorders 32: 231–238

    Article  Google Scholar 

  18. Gepner B., Mestre D., (2002b). Rapid visual-motion integration deficit in autismTrends in Cognitive Sciences 6: 455

    Article  Google Scholar 

  19. Gepner B., Mestre D., Masson G., De-Schonen S., (1995). Postural effects of motion vision in young autistic childrenNeuroreport 6: 1211–1214

    PubMed  Article  Google Scholar 

  20. Geschwind N., Galaburda A. M., (1985). Cerebral Lateralization: Biological mechanisms, associations, and pathology: I. A hypothesis and a program for researchArchives of Neurology 42: 428–459

    PubMed  Google Scholar 

  21. Ghaziuddin M., Butler E., Tsai L., Ghaziuddin N., (1994). Is clumsiness a marker for Asperger syndrome?Journal of Intellectual Disability Research 38: 519–527

    PubMed  Article  Google Scholar 

  22. Hansen P. C., Stein J. F., Orde S. R., Winter J. L., Talcott J. B., (2001). Are dyslexics’ visual deficits limited to measures of dorsal stream function? Neuroreport 12: 1527–1530

    PubMed  Article  Google Scholar 

  23. Henderson S., Sugden D., (1992). The movement assessment battery for childrenThe Psychology Corporation Sidcup

    Google Scholar 

  24. Herman A. E., Galaburda A. M., Fitch R. H., Carter A. R., Rosen G. D., (1997). Cerebral Microgyria, thalamic cell size and auditory temporal processing in male and female ratsCerebral Cortex 7: 453–464

    PubMed  Article  Google Scholar 

  25. Ivry R. B., Diener H. C., (1991). Impaired velocitiy perception in patients with lesions of the cerebellumJournal of Cognitive Neuroscience 3: 355–366

    Article  Google Scholar 

  26. Kondo T., Zakany J., Innis J. W., Duboule D., (1997). Of fingers, toes and penisesNature 390: 185–198

    Article  Google Scholar 

  27. Livingstone M. S., Rosen G. D., Drislane F. W., Galaburda A. M., (1991). Physiological and anatomical evidence for a magnocellular deficit in developmental dyslexiaProceedings of the National Academy of Science 88: 7943–7949

    Article  Google Scholar 

  28. Lovegrove W., Bowling A., Badcock B., Blackwood M., (1980). Specific reading disability: differences in contrast sensitivity as a function of spatial frequencyScience 210: 439–440

    PubMed  Article  Google Scholar 

  29. Lyman H. B., (1978). Test scores and what they meanPrentice Hall, Inc.Englewood Cliffs, NJ

    Google Scholar 

  30. Manjiviona J., Prior M., (1995). Comparison of Asperger syndrome and high-functioning autistic children on a test of motor impairmentJournal of Autism and Developmental Disorders 25: 23–39

    PubMed  Article  Google Scholar 

  31. Manning J. T., (2002). Digit ratio: A pointer to fertility, behaviour and healthRutgers University Press New Brunswich NJ

    Google Scholar 

  32. Manning J. T., Baron-Cohen S., Wheelwright S., Sanders G., (2001). The 2nd to 4th digit ratio and autismDevelopmental Medicine & Child Neurology 43: 160–164

    Article  Google Scholar 

  33. Manning J. T., Scutt D., Wilson J., Lewis-Jones D. I., (1998). The ratio of 2nd to 4th digit length: a predictor of sperm numbers and concentrations of testosterone, lutenizing hormone and oestrogenHuman Reproduction 13: 3000–3004

    PubMed  Article  Google Scholar 

  34. McFadden D., Bracht M. S., (2003). The relative lengths and weights of metacarpals and metatarsals in baboons (Papio hamadryas)Hormones and Behaviour 43: 347–355

    Article  Google Scholar 

  35. Milne E., Swettenham J., Hansen P., Campbell R., Jeffries H., Plaisted K., (2002). High motion coherence thresholds in children with autismJournal of Child Psychology and Psychiatry 43: 255–263

    PubMed  Article  Google Scholar 

  36. Nawrot M., Rizzo M., (1995). Motion perception deficits from midline cerebellar lesions in humanVision Research 35: 723–731

    PubMed  Article  Google Scholar 

  37. Newsome W. T., Pare E. B., (1988). A selective impairment of motion perception following lesions of the middle temporal area (MT)Journal of Neuroscience 8: 2201–2211

    PubMed  Google Scholar 

  38. O’Brien J., Spencer J., Atkinson J., Braddick O., Wattam-Bell J., (2002). Form and motion coherence processing in dyspraxia: evidence of a global spatial processing deficitNeuroreport 113: 1399–1402

    Article  Google Scholar 

  39. Ökten A., Kalyoncu M., Yaris N., (2002). The ratio of second- and fourth- digit lengths and congenital adrenal hyperplasia due to 21-hyroxylas deficiencyEarly Human Development 70: 47–54

    PubMed  Article  Google Scholar 

  40. Otsuka H., Harada M., Mori K., Hisaoka S., Nishitani H., (1999). Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study Neuroradiology 41: 517–519

    PubMed  Article  Google Scholar 

  41. Phelps V. R., (1952). Relative index finger length as a sex-influenced trait in manAmerican Journal of Human Genetics 4: 72–89

    PubMed  Google Scholar 

  42. Piven J., Berthier M. L., Starkstein S. E., Nehme E., Pearlson G., Folstein S., (1990). Magnetic resonance imaging evidence for a defect of cerebral cortical development in autismAmerican Journal of Psychiatry 147: 734–739

    PubMed  Google Scholar 

  43. Ramus F., (2002). Evidence for a domain-specific deficit in developmental dyslexiaBehavioral and Brain Sciences25: 767–768

    Article  Google Scholar 

  44. Ramus F., (2003). Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction?Current Opinion in Neurobiology 13: 212–218

    PubMed  Article  Google Scholar 

  45. Ramus F., Rosen S., Dakin S. C., Day B. L., Castellote J. M., White S., & Frith U. (2003). Theories of developmental dyslexia: insights from a multiple case study of dyslexic adultsBrain 126: 841–865

    PubMed  Article  Google Scholar 

  46. Raven, J., Court, J., & Raven, J. (1988). Raven’s standard progressive matrices. London : H.K.Lewis & Co.Ltd.

    Google Scholar 

  47. Rose D., Bradshwaw M. F., Hibbard P. B., (2003). Attention affects the stereoscopic depth aftereffectPerception 32: 635–640

    PubMed  Article  Google Scholar 

  48. Rosen G. D., Herman A. E., Galaburda A. M., (1999). Sex differences in the effects of early neocortical injury on neuronal size distribution of the medial geniculate nucleus in the rat are mediated by perinatal gonadal steroids Cerebral Cortex 9: 27–34

    PubMed  Article  Google Scholar 

  49. Skottun B. C., (2000). The magnocellular deficit theory of dyslexia: the evidence from contrast sensitivityVision Research 40: 111–127

    PubMed  Article  Google Scholar 

  50. Spencer J., O’Brien J., Riggs K., Braddick O., Atkinson J., Wattam-Bell J., (2000). Motion processing in autism: Evidence for a dorsal stream deficiencyNeuroreport 11: 2765–2767

    PubMed  Article  Google Scholar 

  51. Stein J., Glickstein M., (1992). Role of the cerebellum in visual guidance of movement Physiology Review 72: 972–1017

    Google Scholar 

  52. Stein J., Talcott J., Walsh V., (2000). Controversy about the visual magnocellular deficit in developmental dyslexiaTrends in Cognitive Sciences 4: 209–211

    PubMed  Article  Google Scholar 

  53. Stein J., Walsh V., (1997). To see but not to read; the magnocellular theory of dyslexiaTrends in Neuroscience20: 147–152

    Article  Google Scholar 

  54. Talcott J., Hansen P., Willis-Owen C., McKinnel I. W., Richardson A. J., Stein J., (1998). Visual temporal processing in adult dyslexics: evidence for M-pathway dysfunction NeuroOpthalmology 20(4): 187–201

    Article  Google Scholar 

  55. Tallal P., (1980). Auditory temporal perception, phonics, and reading disabilities in childrenBrain and Language 9: 182–198

    PubMed  Article  Google Scholar 

  56. Thier P., Haarmeier T., Treue S., Barash S., (1999). Absence of a common functional denominator of visual disturbances in cerebellar diseaseBrain 122: 2133–2146

    PubMed  Article  Google Scholar 

  57. Tordjman S., Anderson G. M., McBride P. A., Hertzig M. E., Snow M. E., Hall L. M., Ferrari, P., & Cohen, D. J. (1995). Plasma androgens in autismJournal of Autism and Developmental Disorders 25: 295–304

    PubMed  Article  Google Scholar 

  58. Townsend J., Courchesne E., Egaas B., (1996). Slowed orienting of covert visual-spatial attention in autism: specific deficits associated with cerebellar and parietal abnormalityDevelopment and Psychopathology 8: 563–584

    Article  Google Scholar 

  59. Wing L., (1981). Asperger’s syndrome: a clinical accountPsychological Medicine 11: 115–129

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all the children and schools who took part in this study for their time, effort and cooperation, John Manning for his discussion of 2D:4D measurement, and Marcin Szczerbinski for his discussion of statistical analysis. This research was supported by an ESRC studentship (R42200034283) and a UCL graduate school scholarship awarded to Elizabeth Milne, and partly funded by a Medical Research Council grant (G9617036) awarded to Uta Frith, and a Marie Curie fellowship of the European Community programme Quality of Life (QLGI-CT 1999-51305) awarded to Franck Ramus.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Milne.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Milne, E., White, S., Campbell, R. et al. Motion and Form Coherence Detection in Autistic Spectrum Disorder: Relationship to Motor Control and 2:4 Digit Ratio. J Autism Dev Disord 36, 225–237 (2006). https://doi.org/10.1007/s10803-005-0052-3

Download citation

Keywords

  • Motion detection
  • motor control
  • foetal testosterone
  • autistic spectrum disorder