Skip to main content

Interval and Contour Processing in Autism

Abstract

High functioning children with autism and age and intelligence matched controls participated in experiments testing perception of pitch intervals and musical contours. The finding from the interval study showed superior detection of pitch direction over small pitch distances in the autism group. On the test of contour discrimination no group differences emerged. These findings confirm earlier studies showing facilitated pitch processing and a preserved ability to represent small-scale musical structures in autism.

This is a preview of subscription content, access via your institution.

Fig. 1.

References

  • Applebaum E., Egel A. L., Koegel R. L., Imhoff B., (1979). Measuring musical abilities of autistic children Journal of Autism and Developmental Disorders 9: 279–285

    PubMed  Article  Google Scholar 

  • Asperger H., (1944). Die autistischen psychopathen im kindesalter Archiv fur Psychiatrie und Nervenkrankheiten, 117: 76–136

    Article  Google Scholar 

  • Ayotte J., Peretz I., Hyde K., (2002). Congenital Amusia. A group study of adults afflicted with a music-specific disorder Brain 125: 238–251

    PubMed  Article  Google Scholar 

  • Bever T. G., Chiarello R. J., (1974). Cerebral dominance in musicians and nonmusicians Science 185: 537–539

    PubMed  Article  Google Scholar 

  • Bonnel A. C., Motron L., Peretz I., Trudel M., Gallun E., Bonnel A. M., (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis Journal of Cognitive Neuroscience 15: 226–235

    PubMed  Article  Google Scholar 

  • Dowling W. J., (1978). Scale and contour: Two components of a theory of memory for melodies Psychological Review 85: 341–354

    Article  Google Scholar 

  • Dowling W. J., (1994). Melodic contour in hearing and remembering melodies In: Aiello R., Sloboda J. A., (Eds), Musical perceptions, Oxford University Press: Oxford

    Google Scholar 

  • Edworthy J., (1985). Interval and contour in melody processing Music Perception 2: 375–388

    Google Scholar 

  • Foxton J. M., Stewart M. E., Barnard L., Rodgers J., Young A. L., O’Brien G. O., Griffiths T. D., (2003). Absence of auditory ‘global interference’ in autism Brain 126: 1–7

    Article  Google Scholar 

  • Foxton J. M., Dean J. L., Gee R., Peretz I., Griffiths T. D., (2004). Characterisation of deficits in pitch perception underlying “tone deafness” Brain 127(4): 801–810

    PubMed  Article  Google Scholar 

  • Frith U., (1989). Autism: Explaining the enigma. Oxford: Blackwell

    Google Scholar 

  • Happé F. G. E., (1999). Autism: Cognitive deficit or cognitive style? Trends in Cognitive Sciences 3: 216–222

    PubMed  Article  Google Scholar 

  • Heaton P., (2003). Pitch memory, labeling and disembedding in autism Journal of Child Psychology and Psychiatry 44(4): 543–551

    PubMed  Article  Google Scholar 

  • Heaton P., Hermelin B., Pring L., (1998). Autism and pitch processing: A precursor for savant musical ability? Music Perception 154: 291–305

    Google Scholar 

  • Heaton P., Pring L., Hermelin B., (1999). A pseudo-savant: A case of exceptional musical splinter skills Neurocase 5: 503–509

    Article  Google Scholar 

  • Howell D. C., (1987). Statistical methods for psychology PWS-KENT Publishing Company, Boston

    Google Scholar 

  • Johnsrude I. S., Penhune V. B., Zatorre R. J., (2000). Functional specificity in the right human auditory cortex for perceiving pitch direction Brain 123: 155–163

    PubMed  Article  Google Scholar 

  • Joliffe T., Baron-Cohen S., (1997). Are people with autism and Asperger syndrome faster than normal on the embedded figures test? Journal of Child Psychology and Psychiatry 38: 527–534

    Article  Google Scholar 

  • Kanner L., (1943). Autistic disturbances of affective contact Nervous Child 2: 217–250

    Google Scholar 

  • Liegeois-Chauvel C., Peretz I., Babai M., Laguitton V., Chauvel P., (1998) Contribution of different cortical areas in the temporal lobes to music listening Brain 121: 1853–1867

    PubMed  Article  Google Scholar 

  • Mottron L., Burack J. A., (2001) Enhanced perceptual functioning in the development of autism In J. A. Burack, T. Charman, N. Yirmiya, P. R. Zalazo, (Eds.) The development of autism: Perspectives from theory and research Mahwah, NJ: Lawrence Erlbaum Associates (pp. 131–148)

    Google Scholar 

  • Mottron L., Burack J. A., Iarocci G., Belleville S., Enns J. T., (2003). Locally orientated perception with intact global processing among adolescents with high-functioning autism: Evidence from multiple paradigms Journal of Child Psychology and Psychiatry 44: 904–913

    PubMed  Article  Google Scholar 

  • Mottron L., Peretz I., Menard E., (2000). Local and global processing of music in high-functioning persons with autism: Beyond central coherence? Journal of Child Psychology and Psychiatry 41: 1057–1065

    PubMed  Article  Google Scholar 

  • Patterson R. D., Upperkamp S., Johnsrude I. S., Griffiths T. D., (2002). The processing of temporal pitch and melody information in auditory cortex Neuron 36: 767–776

    PubMed  Article  Google Scholar 

  • Peretz I., (1990). Processing of local and global musical information by unilateral brain-damaged patients Brain 113: 1185–1205

    PubMed  Article  Google Scholar 

  • Peretz I., Ayotte J., Zatorre R. J., Mehler J., Ahad P., Penhune V. B., (2002) Congenital amusia: A disorder of fine-grained pitch discrimination Neuron 33(2): 185–191

    PubMed  Article  Google Scholar 

  • Paretz I., Barbaie M., (1992). The role of contour and intervals in the recognition of melody parts: Evidence from cerebral asymmetries in musicians Neuropsychologia 30: 277–292

    Article  Google Scholar 

  • Paretz I., Morais J., (1987). Analytic processing in the classification of melodies as same or different Neuropsychologia 25: 645–652

    Article  Google Scholar 

  • Perezt I., Morais J., Bertelson P., (1987). Shifting ear differences in melody recognition through strategy inducement Brain and Cognition 6: 202–215

    Article  Google Scholar 

  • Plaisted K., Saksida L., Alcantara J., Weisblatt, 2003 Towards an understanding of the mechanisms of weak central coherence effects: Experiments in visual configural learning and auditory perception Philosophical Transactions Royal Society of London Series B – Biological Sciences 358: 375–386

    Article  Google Scholar 

  • Raven J. C., Court J. H., Raven J., (1988). Standard progressive matrices H.K. Lewis and Co. London

    Google Scholar 

  • Shah A., Frith U., (1983). An islet of ability in autistic children: A research note Journal of Child Psychology and Psychiatry 24: 613–620

    PubMed  Article  Google Scholar 

  • Shah A., Frith U., (1993). Why do autistic individuals show superior performance on the block design task? Journal of Child Psychology and Psychiatry 34: 1351–1364

    PubMed  Article  Google Scholar 

  • Trehub S., Schellenberg E., Hill D., (1997) The origins of music perception and cognition: A developmental perspective In I. Deliege, J. Sloboda, (eds), Perception and cognition of music UK, Psychology Press (pp 103–123)

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Thanks to Ati Hermelin and Linda Pring for help and support, to Jessica Foxton, Francesca Happé and Bob Turner for helpful comments on the manuscript, and to all who participated in the studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Heaton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heaton, P. Interval and Contour Processing in Autism. J Autism Dev Disord 35, 787–793 (2005). https://doi.org/10.1007/s10803-005-0024-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-005-0024-7

Keywords

  • Autism
  • pitch processing
  • global processing
  • music