Abstract
Accumulating evidence supports the presence of a general psychopathology dimension, the p factor (‘p’). Despite growing interest in the p factor, questions remain about how p is assessed. Although multi-informant assessment of psychopathology is commonplace in clinical research and practice with children and adolescents, almost no research has taken a multi-informant approach to studying youth p or has examined the degree of concordance between parent and youth reports. Further, estimating p requires assessment of a large number of symptoms, resulting in high reporter burden that may not be feasible in many clinical and research settings. In the present study, we used bifactor multidimensional item response theory models to estimate parent- and adolescent-reported p in a large community sample of youth (11–17 years) and parents (N = 5,060 dyads). We examined agreement between parent and youth p scores and associations with assessor-rated youth global functioning. We also applied computerized adaptive testing (CAT) simulations to parent and youth reports to determine whether adaptive testing substantially alters agreement on p or associations with youth global functioning. Parent-youth agreement on p was moderate (r =.44) and both reports were negatively associated with youth global functioning. Notably, 7 out of 10 of the highest loading items were common across reporters. CAT reduced the average number of items administered by 57%. Agreement between CAT-derived p scores was similar to the full form (r =.40) and CAT scores were negatively correlated with youth functioning. These novel results highlight the promise and potential clinical utility of a multi-informant p factor approach.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Information is defined in the Analytic Approach section.
The term “quality” when referring to items should be interpreted with caution, because “quality” depends on the purpose of the item. For example, here we assume the GOASSESS was designed to get optimal measurement in a community sample, making extremely difficult (severe) items less informative than items with average severity. However, if the goal of the test were to distinguish among people at very high levels of the trait (e.g., to make a decision about whether an individual is a suicide risk), then items of average severity are “worth” far less.
References
Achenbach, T. M., McConaughy, S. H., & Howell, C. T. (1987). Child/adolescent behavioral and emotional problems: Implications of cross-informant correlations for situational specificity. Psychological Bulletin, 101(2), 213–232. https://doi.org/10.1037/0033-2909.101.2.213.
Allegrini, A. G., Cheesman, R., Rimfeld, K., Selzam, S., Pingault, J. B., Eley, T. C., & Plomin, R. (2020). The p factor: Genetic analyses support a general dimension of psychopathology in childhood and adolescence. Journal of Child Psychology and Psychiatry, 61(1), 30–39. https://doi.org/10.1111/jcpp.13113.
Barzilay, R., Calkins, M. E., Moore, T. M., Boyd, R. C., Jones, J. D., Benton, T. D., Oquendo, M., Gur, R. C., & Gur, R. E. (2019a). Neurocognitive functioning in community youth with suicidal ideation: Gender and pubertal effects. The British Journal of Psychiatry, 215(3), 552–558.
Barzilay, R., Patrick, A., Calkins, M. E., Moore, T. M., Wolf, D. H., Benton, T. D., Leckman, J. F., Gur, R. C., & Gur, R. E. (2019b). Obsessive-compulsive symptomatology in community youth: Typical development or a red flag for psychopathology? Journal of the American Academy of Child & Adolescent Psychiatry, 58(2), 277–286. https://doi.org/10.1016/j.jaac.2018.06.038.
Becker-Haimes, E. M., Jensen-Doss, A., Birmaher, B., Kendall, P. C., & Ginsburg, G. S. (2018). Parent–youth informant disagreement: Implications for youth anxiety treatment. Clinical Child Psychology and Psychiatry, 23(1), 42–56. https://doi.org/10.1177/1359104516689586.
Birnbaum, A. (1969). Statistical theory for logistic mental test models with a prior distribution of ability. Journal of Mathematical Psychology, 6, 258–276. https://doi.org/10.1016/0022-2496(69)90005-4.
Bock, R. D., & Mislevy, R. J. (1982). Adaptive EAP estimation of ability in a microcomputer environment. Applied Psychological Measurement, 6, 431–444. https://doi.org/10.1177/014662168200600405.
Calkins, M. E., Merikangas, K. R., Moore, T. M., Burstein, M., Behr, M. A., Satterthwaite, T. D., Ruparel, K., Wolf, D. H., Roalf, D. R., Mentch, F. D., Qiu, H., Chiavacci, R., Connolly, J. J., Sleiman, P. M. A., Gur, R. C., Hakonarson, H., & Gur, R. E. (2015). The Philadelphia Neurodevelopmental Cohort: Constructing a deep phenotyping collaborative. Journal of Child Psychology and Psychiatry, 56(12), 1356–1369. https://doi.org/10.1111/jcpp.12416.
Caspi, A., & Moffitt, T. E. (2018). All for one and one for all: Mental disorders in one dimension. American Journal of Psychiatry, 175(9), 831–844. https://doi.org/10.1176/appi.ajp.2018.17121383.
Caspi, A., Houts, R. M., Belsky, D. W., Goldman-Mellor, S. J., Harrington, H., Israel, S., Meier, M. H., Ramrakha, S., Shaley, I., Poulton, R., & Moffitt, T. E. (2014). The p factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119–137. https://doi.org/10.1177/2167702613497473.
Chalmers, R. P. (2012). Mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48, 1–29. https://doi.org/10.18637/jss.v048.i06.
Class, Q. A., Van Hulle, C. A., Rathouz, P. J., Applegate, B., Zald, D. H., & Lahey, B. B. (2019). Socioemotional dispositions of children and adolescents predict general and specific second-order factors of psychopathology in early adulthood: A 12-year prospective study. Journal of Abnormal Psychology, 128(6), 574–584. https://doi.org/10.1037/abn0000433.
De Los Reyes, A., Augenstein, T. M., Wang, M., Thomas, S. A., Drabick, D. A., Burgers, D. E., & Rabinowitz, J. (2015). The validity of the multi-informant approach to assessing child and adolescent mental health. Psychological Bulletin, 141(4), 858–900. https://doi.org/10.1037/a0038498.
De Los Reyes, A., Wang, M., Lerner, M. D., Makol, B. A., Fitzpatrick, O., & Weisz, J. R. (2023). The operations Triad Model and youth mental health assessments: Catalyzing a paradigm shift in measurement validation. Journal of Clinical Child and Adolescent Psychology, 52(1), 19–54. https://doi.org/10.1080/15374416.2022.2111684.
Deutz, M. H., Geeraerts, S. B., Belsky, J., Deković, M., van Baar, A. L., Prinzie, P., & Patalay, P. (2020). General psychopathology and dysregulation profile in a longitudinal community sample: Stability, antecedents and outcomes. Child Psychiatry & Human Development, 51(1), 114–126. https://doi.org/10.1007/s10578-019-00916-2.
Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Lawrence Erlbaum.
Ferdinand, R. F., van der Ende, J., & Verhulst, F. C. (2004). Parent-adolescent disagreement regarding psychopathology in adolescents from the general population as a risk factor for adverse outcome. Journal of Abnormal Psychology, 113(2), 198–206. https://doi.org/10.1037/0021-843X.113.2.198.
Fried, E. I., Greene, A. L., & Eaton, N. R. (2021). The p factor is the sum of its parts, for now. World Psychiatry, 20(1), 69. https://doi.org/10.1037/0021-843X.113.2.198.
Gignac, G. E. (2016). The higher-order model imposes a proportionality constraint: That is why the bifactor model tends to fit better. Intelligence, 55, 57–68. https://doi.org/10.1016/j.intell.2016.01.006.
Gili, M., Castellví, P., Vives, M., de la Torre-Luque, A., Almenara, J., Blasco, M. J., Cebrià, A. I., Gabilondo, A., Pérez-Ara, M. A., Lagares, M-M-A., Parés-Badell, C., Piqueras, O., Rodríguez-Jiménez, J. A., Rodríguez-Marín, T., Soto-Sanz, J., Alonso, V., J., & Roca, M. (2019). Mental disorders as risk factors for suicidal behavior in young people: A meta-analysis and systematic review of longitudinal studies. Journal of Affective Disorders, 245, 152–162. https://doi.org/10.1016/j.jad.2018.10.115.
Goolsby, J., Rich, B. A., Hinnant, B., Habayeb, S., Berghorst, L., De Los Reyes, A., & Alvord, M. K. (2018). Parent–child informant discrepancy is associated with poorer treatment outcome. Journal of Child and Family Studies, 27(4), 1228–1241. https://doi.org/10.1007/s10826-017-0946-7.
Heinrich, M., Geiser, C., Zagorscak, P., Burns, G. L., Bohn, J., Becker, S. P., Eid, M., Beauchaine, T. P., & Knaevelsrud, C. (2023). On the meaning of the P factor in symmetrical bifactor models of psychopathology: Recommendations for future research from the bifactor-(S– 1) perspective. Assessment, 30(3), 487–507. https://doi.org/10.1177/10731911211060298.
Israel, P., Thomsen, P. H., Langeveld, J. H., & Stormark, K. M. (2007). Parent–youth discrepancy in the assessment and treatment of youth in usual clinical care setting: Consequences to parent involvement. European Child & Adolescent Psychiatry, 16(2), 138–148. https://doi.org/10.1007/s00787-006-0583-y.
Jones, J. D., Scott, J. C., Calkins, M. E., Ruparel, K., Moore, T. M., Gur, R. C., & Gur, R. E. (2017a). Correspondence between adolescent and informant reports of substance use: Findings from the Philadelphia Neurodevelopmental Cohort. Addictive Behaviors, 65, 13–18. https://doi.org/10.1016/j.addbeh.2016.09.006.
Jones, J. D., Calkins, M. E., Scott, J. C., Bach, E. C., & Gur, R. E. (2017b). Cannabis use, polysubstance use, and psychosis spectrum symptoms in a community-based sample of US youth. Journal of Adolescent Health, 60(6), 653–659. https://doi.org/10.1016/j.jadohealth.2017.01.006.
Jones, J. D., Boyd, R. C., Calkins, M. E., Ahmed, A., Moore, T. M., Barzilay, R., Benton, T. D., & Gur, R. E. (2019). Parent-adolescent agreement about adolescents’ suicidal thoughts. Pediatrics, 143(2), e20181771. https://doi.org/10.1542/peds.2018-1771.
Jones, J. D., Boyd, R. C., Calkins, M. E., Moore, T. M., Ahmed, A., Barzilay, R., Benton, T. D., Gur, R. E., & Gur, R. C. (2021). Association between family history of suicide attempt and neurocognitive functioning in community youth. Journal of Child Psychology and Psychiatry, 62(1), 58–65. https://doi.org/10.1111/jcpp.13239.
Kaufman, J., Birmaher, B., Brent, D., Rao, U. M. A., Flynn, C., Moreci, P., Williamson, D., & Ryan, N. (1997). Schedule for affective disorders and Schizophrenia for School-Age Children-Present and Lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child & Adolescent Psychiatry, 36, 980–988.
Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 617–627. https://doi.org/10.1001/archpsyc.62.6.617.
Krueger, R. F. (1999). The structure of common mental disorders. Archives of General Psychiatry, 56(10), 921–926. https://doi.org/10.1001/archpsyc.56.10.921.
Lahey, B. B., Applegate, B., Hakes, J. K., Zald, D. H., Hariri, A. R., & Rathouz, P. J. (2012). Is there a general factor of prevalent psychopathology during adulthood? Journal of Abnormal Psychology, 121(4), 971–977. https://doi.org/10.1037/a0028355.
Lahey, B. B., Krueger, R. F., Rathouz, P. J., Waldman, I. D., & Zald, D. H. (2017). A hierarchical causal taxonomy of psychopathology across the life span. Psychological Bulletin, 143(2), 142–186. https://doi.org/10.1037/bul0000069.
Lahey, B. B., Moore, T. M., Kaczkurkin, A. N., & Zald, D. H. (2021). Hierarchical models of psychopathology: Empirical support, implications, and remaining issues. World Psychiatry, 20(1), 57–63. https://doi.org/10.1002/wps.20824.
Makol, B. A., De Los Reyes, A., Ostrander, R., & Reynolds, E. K. (2019). Parent-youth divergence (and convergence) in reports of youth internalizing problems in psychiatric inpatient care. Journal of Abnormal Child Psychology, 47(10), 1677–1689. https://doi.org/10.1007/s10802-019-00540-7.
Markon, K. E. (2010). Modeling psychopathology structure: A symptom-level analysis of Axis I and II disorders. Psychological Medicine, 40(2), 273–288. https://doi.org/10.1017/S0033291709990183.
McDonald, R. P. (2000). A basis for multidimensional item response theory. Applied Psychological Measurement, 24(2), 99–114. https://doi.org/10.1177/01466210022031552.
McElroy, E., Belsky, J., Carragher, N., Fearon, P., & Patalay, P. (2018). Developmental stability of general and specific factors of psychopathology from early childhood to adolescence: Dynamic mutualism or p-differentiation? Journal of Child Psychology and Psychiatry, 59(6), 667–675. https://doi.org/10.1111/jcpp.12849.
Moore, T. M., & Lahey, B. B. (2022). Issues in estimating interpretable lower order factors in second-order hierarchical models: Commentary on Clark et al. (2021). Clinical Psychological Science, 10(3), 593–598. https://doi.org/10.1177/21677026211035114.
Moore, T. M., Calkins, M. E., Satterthwaite, T. D., Roalf, D. R., Rosen, A. F., Gur, R. C., & Gur, R. E. (2019). Development of a computerized adaptive screening tool for overall psychopathology (p). Journal of Psychiatric Research, 116, 26–33. https://doi.org/10.1016/j.jpsychires.2019.05.028.
Moore, T. M., Di Sandro, A., Scott, J. C., Lopez, K. C., Ruparel, K., Njokweni, L. J., Santra, S., Conway, D. S., Port, A. M., D’Errico, L., Rush, S., Wolf, D. H., Calkins, M. E., Gur, R. E., & Gur, R. C. (2023). Construction of a computerized adaptive test (CAT-CCNB) for efficient neurocognitive and clinical psychopathology assessment. Journal of Neuroscience Methods, 109795. https://doi.org/10.1016/j.jneumeth.2023.109795.
Nolen-Hoeksema, S., & Watkins, E. R. (2011). A heuristic for developing transdiagnostic models of psychopathology: Explaining multifinality and divergent trajectories. Perspectives on Psychological Science, 6(6), 589–609. https://doi.org/10.1177/1745691611419672.
Pettersson, E., Lahey, B. B., Larsson, H., & Lichtenstein, P. (2018). Criterion validity and utility of the general factor of psychopathology in childhood: Predictive associations with independently measured severe adverse mental health outcomes in adolescence. Journal of the American Academy of Child & Adolescent Psychiatry, 57(6), 372–383. https://doi.org/10.1016/j.jaac.2017.12.016.
Reckase, M. D. (1997). The past and future of multidimensional item response theory. Applied Psychological Measurement, 21(1), 25–36. https://doi.org/10.1177/0146621697211002.
Reckase, M. D. (2009). Multidimensional item response theory. Springer.
Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47(5), 667–696. https://doi.org/10.1080/00273171.2012.715555.
Reise, S. P., Moore, T. M., & Haviland, M. G. (2010). Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores. Journal of Personality Assessment, 92(6), 544–559. https://doi.org/10.1080/00223891.2010.496477.
Reise, S., Moore, T., & Maydeu-Olivares, A. (2011). Target rotations and assessing the impact of model violations on the parameters of unidimensional item response theory models. Educational and Psychological Measurement, 71(4), 684–711. https://doi.org/10.1177/0013164410378690.
Reise, S. P., Cook, K. F., & Moore, T. M. (2015). Evaluating the impact of multidimensionality on unidimensional item response theory model parameters. In S. Reise, & D. Revicki (Eds.), Handbook of Item Response Theory modeling. Taylor & Francis.
Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016a). Evaluating bifactor models: Calculating and interpreting statistical indices. Psychological Methods, 21(2), 137–150. https://doi.org/10.1037/met0000045.
Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016b). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98(3), 223–237. https://doi.org/10.1080/00223891.2015.1089249.
Ronald, A. (2019). The psychopathology p factor: Will it revolutionise the science and practice of child and adolescent psychiatry? https://doi.org/10.1111/jcpp.13063.
Satterthwaite, T. D., Elliott, M. A., Ruparel, K., Loughead, J., Prabhakaran, K., Calkins, M. E., Hopson, R., Jackson, C., Keefe, J., Riley, M., Mentch, F. D., Sleiman, P., Verma, R., Davatzikos, C., Hakonarson, H., Gur, R. C., & Gur, R. E. (2014). Neuroimaging of the Philadelphia Neurodevelopmental Cohort. Neuroimage, 86, 544–553. https://doi.org/10.1016/j.neuroimage.2013.07.064.
Schweizer, T. H., Snyder, H. R., Young, J. F., & Hankin, B. L. (2020). The breadth and potency of transdiagnostic cognitive risks for psychopathology in youth. Journal of Consulting and Clinical Psychology, 88(3), 196–211. https://doi.org/10.1037/ccp0000470.
Shaffer, D., Gould, M. S., Brasic, J., Ambrosini, P., Fisher, P., Bird, H., & Aluwahlia, S. (1983). A children’s global assessment scale (CGAS). Archives of General Psychiatry, 40(11), 1228–1231. https://doi.org/10.1001/archpsyc.1983.01790100074010.
Shanmugan, S., Wolf, D. H., Calkins, M. E., Moore, T. M., Ruparel, K., Hopson, R. D., Vandekar, S. N., Roalf, D. R., Elliott, M. A., Jackson, C., Gennatas, E. D., Leibenluft, E., Pine, D. S., Shinohara, R. T., Hakonarson, H., Gur, R. C., Gur, R. E., & Satterthwaite, T. D. (2016). Common and dissociable mechanisms of executive system dysfunction across psychiatric disorders in youth. American Journal of Psychiatry, 173(5), 517–526. https://doi.org/10.1176/appi.ajp.2015.15060725.
Smith, G. T., Atkinson, E. A., Davis, H. A., Riley, E. N., & Oltmanns, J. R. (2020). The general factor of psychopathology. Annual Review of Clinical Psychology, 16, 75–98. https://doi.org/10.1146/annurev-clinpsy-071119-115848.
Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2), 245–251. https://doi.org/10.1037/0033-2909.87.2.245.
Tackett, J. L., Lahey, B. B., Van Hulle, C., Waldman, I., Krueger, R. F., & Rathouz, P. J. (2013). Common genetic influences on negative emotionality and a general psychopathology factor in childhood and adolescence. Journal of Abnormal Psychology, 122(4), 1142–1153. https://doi.org/10.1037/a0034151.
Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 41(3), 321–327. https://doi.org/10.1007/BF02293557.
Watts, A. L., Lane, S. P., Bonifay, W., Steinley, D., & Meyer, F. A. (2020). Building theories on top of, and not independent of, statistical models: The case of the p-factor. Psychological Inquiry, 31(4), 310–320. https://doi.org/10.1080/1047840X.2020.1853476.
Watts, A. L., Makol, B. A., Palumbo, I. M., De Los Reyes, A., Olino, T. M., Latzman, R. D., DeYoung, C. G., Wood, P. K., & Sher, K. J. (2022). How robust is the p factor? Using multitrait-multimethod modeling to inform the meaning of general factors of youth psychopathology. Clinical Psychological Science, 10(4), 640–661. https://doi.org/10.1177/21677026211055170.
Watts, A. L., Greene, A. L., Bonifay, W., & Fried, E. I. (2024). A critical evaluation of the p-factor literature. Nature Reviews Psychology, 3, 108–122. https://doi.org/10.1038/s44159-023-00260-2.
Williams, E. J. (1959). Regression analysis. New York: Wiley. Xavier, R. M., Calkins, M. E., Bassett, D. S., Moore, T. M., George, W. T., Taylor, J. H., & Gur, R. E. (2022). Characterizing youth-caregiver concordance and discrepancies in psychopathology symptoms in a US community sample. Issues in Mental Health Nursing, 43(11), 1004–1013. https://doi.org/10.1080/01612840.2022.2099494.
Xavier, R. M., Calkins, M. E., Bassett, D. S., Moore, T. M., George, W. T., Taylor, J. H., & Gur, R. E. (2022). Characterizing youth-caregiver concordance and discrepancies in psychopathology symptoms in a US community sample. Issues in Mental Health Nursing, 43(11), 1004–1013. https://doi.org/10.1080/01612840.2022.2099494
Acknowledgements
We thank the participants of this study and all the members of the Recruitment, Assessment, and Data Teams whose individual contributions collectively made this work possible. This research was supported by the NIH (RC2 MH089983, MH117014, MH119219, MH117014 and MH089924; K08MH079364; K23MH120437; NIDA supplement to MH089983), the Dowshen Program for Neuroscience, and the Lifespan Brain Institute (LiBI) of Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine.
Disclosures
Ran Barzilay serves on the scientific Advisory Board and holds equity in ‘Taliaz Health’, with no relevance to the current work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jones, J.D., Boyd, R., Sandro, A. et al. The General Psychopathology ‘p’ Factor in Adolescence: Multi-Informant Assessment and Computerized Adaptive Testing. Res Child Adolesc Psychopathol (2024). https://doi.org/10.1007/s10802-024-01223-8
Accepted:
Published:
DOI: https://doi.org/10.1007/s10802-024-01223-8