Journal of Abnormal Child Psychology

, Volume 45, Issue 5, pp 911–920 | Cite as

Acute Stimulant Treatment and Reinforcement Increase the Speed of Information Accumulation in Children with ADHD

  • Whitney D. Fosco
  • Corey N. White
  • Larry W. HawkJr


The current studies utilized drift diffusion modeling (DDM) to examine how reinforcement and stimulant medication affect cognitive task performance in children with ADHD. In Study 1, children with (n = 25; 88 % male) and without ADHD (n = 33; 82 % male) completed a 2-choice discrimination task at baseline (100 trials) and again a week later under alternating reinforcement and no-reinforcement contingencies (400 trials total). In Study 2, participants with ADHD (n = 29; 72 % male) completed a double-blind, placebo-controlled trial of 0.3 and 0.6 mg/kg methylphenidate and completed the same task utilized in Study 1 at baseline (100 trials). Children with ADHD accumulated information at a much slower rate than controls, as evidenced by a lower drift rate. Groups were similar in nondecision time and boundary separation. Both reinforcement and stimulant medication markedly improved drift rate in children with ADHD (ds = 0.70 and 0.95 for reinforcement and methylphenidate, respectively); both treatments also reduced boundary separation (ds = 0.70 and 0.39). Reinforcement, which emphasized speeded accuracy, reduced nondecision time (d = 0.37), whereas stimulant medication increased nondecision time (d = 0.38). These studies provide initial evidence that frontline treatments for ADHD primarily impact cognitive performance in youth with ADHD by improving the speed/efficiency of information accumulation. Treatment effects on other DDM parameters may vary between treatments or interact with task parameters (number of trials, task difficulty). DDM, in conjunction with other approaches, may be helpful in clarifying the specific cognitive processes that are disrupted in ADHD, as well as the basic mechanisms that underlie the efficacy of ADHD treatments.


ADHD Drift rate Diffusion model Reinforcement Methylphenidate 



This research was funded by grant R01MH069434 to LWH from the National Institute of Mental Health.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in this study.


  1. Alderson, R. M., Rapport, M. D., Sarver, D. E., & Kofler, M. J. (2008). ADHD and behavioral inhibition: a re-examination of the stop-signal task. Journal of Abnormal Child Psychology, 36, 989–998.CrossRefPubMedGoogle Scholar
  2. American Academy of Pediatrics (2011). ADHD: clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics, 128, 1007–1022.CrossRefGoogle Scholar
  3. American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Association.Google Scholar
  4. Bedard, A. C., Martinussen, R., Ickowicz, A., & Tannock, R. (2004). Methylphenidate improves visual-spatial memory in children with attention-deficits/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 260–268.CrossRefPubMedGoogle Scholar
  5. Bubnik, M. G., Hawk Jr., L. W., Pelham Jr., W. E., Waxmonsky, J. G., & Rosch, K. S. (2015). Reinforcement enhances vigilance among children with ADHD: comparisons to typically-developing children and to the effects of methylphenidate. Journal of Abnormal Child Psychology, 43, 149–161.CrossRefPubMedPubMedCentralGoogle Scholar
  6. DeVito, E. E., Blackwell, A. D., Clark, L., Kent, L., Dezsery, A. M., Turner, D. C., & Sahakian, B. J. (2009). Methylphenidate improves response inhibition but not reflection-impulsivity in children with attention deficit hyperactivity disorder (ADHD). Psychopharmacology, 202, 531–539.CrossRefPubMedGoogle Scholar
  7. Dovis, S., Van der Oord, S., Wiers, R. W., & Prins, P. J. M. (2013). Can motivation normalize working memory and task persistence in children with attention-deficit/hyperactivity disorder? The effects of money and computer gaming. Journal of Abnormal Child Psychology, 40, 669–681.CrossRefGoogle Scholar
  8. Epstein, J. N., Brinkman, W. B., Froehlich, T., Langberg, J. M., Narad, M. E., Antonini, T. A., & Altaye, M. (2011). Effects of stimulant medication, incentives, and event rate on reaction time variability in children with ADHD. Neuropsychopharmacology, 36, 1060–1072.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fabiano, G. A., Pelham, W. E., Waschbusch, D. A., Gnagy, E. M., Lahey, B. B., Chronis, A. M., et al. (2006). A practical measure of impairment: psychometric properties of the impairment rating scale in samples of children with attention deficit hyperactivity disorder and two school-based samples. Journal of Clinical Child & Adolescent Psychology, 35, 369–385.CrossRefGoogle Scholar
  10. Fabiano, G. A., Pelham Jr., W. E., Coles, E. K., Gnagy, E. M., Chronis-Tuscano, A., & O’Connor, B. C. (2009). A meta-analysis of behavioral treatments for attention-deficit/hyperactivity disorder. Clinical Psychology Review, 29, 129–140.CrossRefPubMedGoogle Scholar
  11. Fosco, W. D., Hawk, L. W., Jr., Rosch, K. S., & Bubnik, M. G. (2015). Evaluating cognitive and motivational accounts of greater reinforcement effects among children with attention-deficit/hyperactivity disorder. Behavioral and Brain Functions, 11. Retrieved from
  12. Huang-Pollock, C. L., Karalunas, S. L., Tam, H., & Moore, A. N. (2012). Evaluating vigilance deficits in ADHD: a meta-analysis of CPT performance. Journal of Abnormal Psychology, 121, 360–371.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Huang-Pollock, C., Ratcliff, R., McKoon, G., Shapiro, Z., Weigard, A., & Galloway-Long, H. (2016). Using the diffusion model to explain cognitive deficits in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 1–12.Google Scholar
  14. Jepma, M., Wagenmakers, E. J., Band, G. P., & Nieuwenhuis, S. (2009). The effects of accessory stimuli on information processing: evidence from electrophysiology and a diffusion model analysis. Journal of Cognitive Neuroscience, 21, 847–864.CrossRefPubMedGoogle Scholar
  15. Karalunas, S. L., & Huang-Pollock, C. L. (2013). Integrating impairments in reaction time and executive function using a diffusion model framework. Journal of Abnormal Child Psychology, 41, 837–850.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Karalunas, S. L., Geurts, H. M., Konrad, K., Bender, S., & Nigg, J. (2014). Annual research review: reaction time variability in ADHD and autism spectrum disorders: measurements and mechanisms of a proposed trans-diagnostic phenotype. Journal of Child Psychology and Psychiatry, 55, 685–710.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A., Friedman, L. M., & Kolomeyer, E. G. (2013). Reaction time variability in ADHD: a meta-analytic review of 319 studies. Clinical Psychology Review, 33, 795–811.CrossRefPubMedGoogle Scholar
  18. Kuntsi, J. (2014). Commentary: from noise to insight? Reaction time variability in ADHD and autism spectrum disorders- a commentary on Karalunas et al. (2014). Journal of Child Psychology and Psychiatry, 55, 711–713.CrossRefPubMedGoogle Scholar
  19. Lijffijt, M., Kenemans, J. L., Verbaten, M. N., & van Engeland, H. (2005). A meta-analytic review of stopping performance in attention-deficits/hyperactivity disorder: deficient inhibitory motor control? Journal of Abnormal Psychology, 114, 216–222.CrossRefPubMedGoogle Scholar
  20. Lipszyc, J., & Schachar, R. (2010). Inhibitory control and psychopathology: a meta-analysis of the stop signal task. Journal of the International Neuropsychological Society, 16, 1064–1076.CrossRefPubMedGoogle Scholar
  21. Luman, M., Oosterlann, J., & Sergeant, J. A. (2005). The impact of reinforcement contingencies on AD/HD: a review and theoretical appraisal. Clinical Psychology Review, 25, 183–213.CrossRefPubMedGoogle Scholar
  22. Ma, I., van Duijvenvoorde, A., & Scheres, A. (2016). Interaction between reinforcement and inhibitory control in ADHD: a review and research guidelines. Clinical Psychology Review, 44, 94–111.CrossRefPubMedGoogle Scholar
  23. Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 377–384.CrossRefPubMedGoogle Scholar
  24. Metin, B., Roeyers, H., Wiersema, J. R., van der Meere, J., Thompson, M., & Sonuga-Barke, E. (2013). ADHD performance reflects inefficient but not impulsive information processing: a diffusion model analysis. Neuropsychology, 27, 193–200.CrossRefPubMedGoogle Scholar
  25. Moustafa, A. A., Keri, S., Somlai, Z., Balsdon, T., Frydecka, D., Misiak, B., & White, C. N. (2015). Drift diffusion model of reward and punishment learning in schizophrenia: modeling and experimental data. Behavioural Brain Research, 291, 147–154.CrossRefPubMedGoogle Scholar
  26. Mulder, M. J., Bos, D., Weusten, J. M. H., van Belle, J., van Dijk, S. C., Simen, P., & Durston, S. (2010). Basic impairments in regulating the speed-accuracy tradeoff predict symptoms of attention-deficit/hyperactivity disorder. Biological Psychiatry, 68, 1114–1119.CrossRefPubMedGoogle Scholar
  27. Pelham, W. E., Gnagy, E. M., Greenslade, K. E., & Milich, R. (1992). Teacher ratings of DSM-III-R symptoms for the disruptive behavior disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 31, 210–218.CrossRefPubMedGoogle Scholar
  28. Pelham, W. E., Burrows-McLean, L., Gnagy, E. M., Fabiano, G. A., Coles, E. K., Wymbs, B. T., & Waschbusch, D. A. (2014). A dose-ranging study of behavioral and pharmacological treatment in social settings for children with ADHD. Journal of Abnormal Child Psychology, 42, 1019–1031.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.CrossRefGoogle Scholar
  30. Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive Psychology, 53, 195–237.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ratcliff, R., & Frank, M. J. (2012). Reinforcement-based decision making in corticostriatal circuits: mutual constraints by neurocomputational and diffusion models. Neural Computation, 24, 1186–1229.CrossRefPubMedGoogle Scholar
  32. Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two- choice decision tasks. Neural Computation, 20, 873–922.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9, 347–356.CrossRefGoogle Scholar
  34. Ratcliff, R., & Teurlinckx, F. (2002). Estimating parameters of the diffusion model: approaching dealing with contaminant reaction and parameter variability. Psychonomic Bulletin & Review, 9, 438–481.CrossRefGoogle Scholar
  35. Ratcliff, R., & Van Dongen, H. P. A. (2011). Diffusion model for one-choice reaction-time tasks and the cognitive effects of sleep deprivation. Proceedings of the National Academy of Sciences of the United States of America, 108, 11285–11290.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rosch, K. S., Fosco, W. D., Pelham Jr., W. E., Waxmonsky, J. G., Bubnik, M. G., & Hawk Jr., L. W. (2016). Reinforcement and stimulant medication ameliorate deficient response inhibition in children with attention-deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 44, 309–321.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Salum, G. A., Sergeant, J., Sonuga-Barke, E., Vanderkerckhove, J., Gadelha, A., Moriyama, T. S., & Rohde, L. A. P. (2014). Specificity of basic information processing and inhibitory control in attention deficit hyperactivity disorder. Psychological Medicine, 44, 617–631.CrossRefPubMedGoogle Scholar
  38. Selen, L. P., Shadlen, M. N., & Wolpert, D. M. (2012). Deliberation in the motor system: reflex gains track evolving evidence leading to a decision. The Journal of Neuroscience, 32, 2276–2286.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Servant, M., White, C., Montagnini, A., & Burle, B. (2015). Using covert response activation to test latent assumptions of formal decision-making models in humans. The Journal of Neuroscience, 35, 10371–10385.CrossRefPubMedGoogle Scholar
  40. Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH diagnostic interview schedule for children version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 28–38.CrossRefPubMedGoogle Scholar
  41. Shahar, N., Teodorescu, A. R., Karmon-Presser, A., Anholt, G. E., & Meiran, N. (2016). Memory for action rules and reaction time variability in attention-deficit/hyperactivity disorder. Biological Psychiatry: cognitive Neuroscience and Neuroimaging, 1, 132–140.Google Scholar
  42. Spencer, S. V., Hawk Jr., L. W., Richards, J. B., Shiels, K., Pelham Jr., W. E., & Waxmonsky, J. G. (2009). Stimulant treatment reduces lapses in attention among children with ADHD: the effects of methylphenidate on intra-individual response time distributions. Journal of Abnormal Child Psychology, 37, 805–816.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Strand, M. T., Hawk Jr., L. W., Bubnik, M., Shiels, K., Pelham Jr., W. E., & Waxmonsky, J. G. (2012). Improving working memory in children with attention-deficit/hyperactivity disorder: the separate and combined effects of incentives and stimulant medication. Journal of Abnormal Child Psychology, 40, 1193–1207.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: an empirical validation. Memory & Cognition, 32, 1206–1220.CrossRefGoogle Scholar
  45. Wechsler, D. L. (2003). Wechsler intelligence scale for children - fourth edition (WISC-IV). San Antonio, TX: The Psychological Corporation.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Whitney D. Fosco
    • 1
  • Corey N. White
    • 3
  • Larry W. HawkJr
    • 1
    • 2
  1. 1.Department of PsychologyUniversity at Buffalo, SUNYBuffaloUSA
  2. 2.Center for Children and FamiliesUniversity at Buffalo, SUNYBuffaloUSA
  3. 3.Department of PsychologySyracuse UniversitySyracuseUSA

Personalised recommendations