The Interim Service Preferences of Parents Waiting for Children’s Mental Health Treatment: A Discrete Choice Conjoint Experiment

Abstract

Parents seeking help for children with mental health problems are often assigned to a waiting list. We used a discrete choice conjoint experiment to model preferences for interim services that might be used while waiting for the formal assessment and treatment process to begin. A sample of 1,059 parents (92 % mothers) seeking mental health services for 4 to 16 year olds chose between hypothetical interim services composed by experimentally varying combinations of the levels of 13 interim service attributes. Latent Class analysis yielded a four–segment solution. All segments preferred interim options helping them understand how agencies work, enhancing their parenting knowledge and skill, and providing an opportunity to understand or begin dealing with their own difficulties. The Group Contact segment (35.1 %) preferred interim services in meetings with other parents, supported by phone contacts, frequent checkup calls, and wait–time updates. Virtual Contact parents (29.2 %) preferred to meet other parents in small internet chat groups supported by e–mail contact. Membership in this segment was linked to higher education and computer skills. Frequent Contact parents (24.4 %) preferred face–to–face interim services supported by weekly progress checks and wait time updates. Limited Contact parents (11.3 %) were less intent on using interim services. They preferred to pursue interim services alone, with contacts by phone, supported by fewer check–up calls and less frequent wait time updates. All segments were more likely to enroll in interim services involving their child.

This is a preview of subscription content, access via your institution.

Fig. 1

Notes

  1. 1.

    According to Huber et al. (2007), Randomized First Choice: “. . .begins with a random utility model with variability components on both the coefficients and the residual error:

    $$ {{\mathrm{U}}_{\mathrm{i}}}={{\mathrm{X}}_{\mathrm{i}}}\left( {\beta +{{\mathrm{E}}_{\mathrm{A}}}} \right)+{{\mathrm{E}}_{\mathrm{P}}} $$
    (1)

    Where:

    Ui :

    Utility of product i for an individual or homogeneous segment at a moment in time

    Xi :

    Row vector of attribute scores for alternative i

    β:

    Vector of part worths

    EA :

    Variability added to the part worths (same for all alternatives)

    EP :

    Variability added to product i (unique for each alternative)

    In the simulator, the probability of choosing alternative i in choice set S is the probability that its randomized utility is the greatest in the set, or:

    $$ \Pr \left( {\mathrm{i}\left| \mathrm{S} \right.} \right)=\Pr \left( {{{\mathrm{U}}_{\mathrm{i}}}\geq {{\mathrm{U}}_{\mathrm{j}}}\;\mathrm{all}\;\mathrm{j}\in \mathrm{S}} \right) $$
    (2)

    Equation 2 is estimated by using a simulator to draw Ui from Eq. 1 and simply enumerating the probabilities”. The results of RFC simulations reflect the average of 200,000 iterations of the computational formula.

References

  1. Andrews, R. L., & Currim, I. S. (2003). A comparison of segment retention criteria for finite mixture logit models. Journal of Marketing Research, 40, 235–243.

    Article  Google Scholar 

  2. Armitage, C. J., & Conner, M. (2001). Efficacy of the theory of planned behaviour: a meta-analytic review. The British Journal of Social Psychology, 40(4), 471–499.

    PubMed  Article  Google Scholar 

  3. Barkley, R. A., Shelton, T. L., Crosswait, C., Moorehouse, M., Fletcher, K., Barrett, S., et al. (2000). Multi-method psycho-educational intervention for preschool children with disruptive behavior: preliminary results at post-treatment. Journal of Child Psychology and Psychiatry, 41, 319–332.

    PubMed  Article  Google Scholar 

  4. Barrett, P. M., Duffy, A. L., Dadds, M. R., & Rapee, R. M. (2001). Cognitive-behavioral treatment of anxiety disorders in children: long-term (6-year) follow-up. Journal of Consulting and Clinical Psychology, 69, 135–141.

    PubMed  Article  Google Scholar 

  5. Bogels, S. M. (2007). Bibliotherapy is more effective than waiting list for reducing childhood anxiety disorder, but not as effective as group cognitive behavioural therapy. Evidence-Based Mental Health, 10, 22.

    PubMed  Article  Google Scholar 

  6. Boxall, P. C., & Adamowicz, W. L. (2002). Understanding heterogeneous preferences in random utility models: a latent class approach. Environmental and Resource Economics, 23, 421–446.

    Article  Google Scholar 

  7. Boyle, M. H., Cunningham, C. E., Georgiades, K., Cullen, J., Racine, Y., & Pettingill, P. (2009). The brief child and family phone interview (BCFPI): 2. usefulness in screening for child and adolescent psychopathology. Journal of Child Psychology and Psychiatry, 50, 424–431.

    PubMed  Article  Google Scholar 

  8. Bridges, J. F. P., Hauber, A. B., Marshall, D., Lloyd, A., Prosser, L. A., Regier, D. A., et al. (2011). Conjoint analysis applications in Health—a checklist: a report of the ISPOR good research practices for conjoint analysis task force. Value in Health, 14, 403–413.

    PubMed  Article  Google Scholar 

  9. Caruso, E. M., Rahnev, D. A., & Banaji, M. R. (2009). Using conjoint analysis to detect discrimination: revealing covert preferences from overt choices. Social Cognition, 27, 128–137.

    Article  Google Scholar 

  10. Celeux, G., & Soromenho, G. (1996). An entropy criterion for assessing the number of clusters in a mixture model. Journal of Classification, 13, 195–212.

    Article  Google Scholar 

  11. Coast, J. (1999). The appropriate uses of qualitative methods in health economics. Health Economics, 8(4), 345–353.

    PubMed  Article  Google Scholar 

  12. Cohen-Charash, Y., & Spector, P. E. (2001). The role of justice in organizations: a meta-analysis. Organizational Behavior and Human Decision Processes, 86, 278–321.

    Article  Google Scholar 

  13. Corkum, P., Rimer, P., & Schachar, R. (1999). Parental knowledge of attention-deficit hyperactivity disorder and opinions of treatment options: impact on enrollment and adherence to a 12-month treatment trial. Canadian Journal of Psychiatry, 44, 1043–1048.

    Google Scholar 

  14. Cotten, S. R., & Gupta, S. S. (2004). Characteristics of online and offline health information seekers and factors that discriminate between them. Social Science & Medicine, 59, 1795–1806.

    Article  Google Scholar 

  15. Creswell, J. W. (2003). Research design: Qualitative, quantitative, and mixed method approaches. Thousand Oaks: Sage Publications Inc.

    Google Scholar 

  16. Cunningham, C. E., Bremner, R., & Boyle, M. (1995). Large group community-based parenting programs for families of preschoolers at risk for disruptive behaviour disorders: utilization, cost effectiveness, and outcome. Journal of Child Psychology and Psychiatry, 36, 1141–1159.

    PubMed  Article  Google Scholar 

  17. Cunningham, C. E., Boyle, M., Offord, D., Racine, Y., Hundert, J., Secord, M., et al. (2000). Tri-ministry study: correlates of school-based parenting course utilization. Journal of Consulting and Clinical Psychology, 68, 928–933.

    PubMed  Article  Google Scholar 

  18. Cunningham, C. E., Deal, K., Rimas, H., Buchanan, D. H., Gold, M., Sdao-Jarvie, K., et al. (2008). Modeling the information preferences of parents of children with mental health problems: a discrete choice conjoint experiment. Journal of Abnormal Child Psychology, 36, 1128–1138.

    Article  Google Scholar 

  19. Cunningham, C. E., Boyle, M. H., Hong, S., Pettingill, P., & Bohaychuk, D. (2009). The brief child and family phone interview (BCFPI): 1. rationale, development, and description of a computerized children’s mental health intake and outcome assessment tool. Journal of Child Psychology and Psychiatry, 50, 416–423.

    PubMed  Article  Google Scholar 

  20. Cunningham, C. E., Deal, K., Rimas, H., Chen, Y., Buchanan, D. H., & Sdao-Jarvie, K. (2009). Providing information to parents of children with mental health problems: a discrete choice conjoint analysis of professional preferences. Journal of Abnormal Child Psychology, 37, 1089–1102.

    PubMed  Article  Google Scholar 

  21. Cunningham, C. E., McGrath, P., Chen, Y., Graham, R., Lipman, E., Corkum, P. (2013) Waiting for children’s mental health services: A qualitative analysis of factors influencing the utilization and outcome of interim service options. Unpublished data

  22. Evans, J. S. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–278.

    PubMed  Article  Google Scholar 

  23. Eyberg, S. M., Boggs, S. R., & Algina, J. (1995). Parent–child interaction therapy: a psychosocial model for the treatment of young children with conduct problem behavior and their families. Psychopharmacology Bulletin, 31, 83–91.

    PubMed  Google Scholar 

  24. Griffiths, K. M., Farrer, L., & Christensen, H. (2010). The efficacy of internet interventions for depression and anxiety disorders: a review of randomised controlled trials. The Medical Journal of Australia, 192, S4–S11.

    PubMed  Google Scholar 

  25. Gustafsson, A., Herrmann, A., & Huber, F. (2007). Conjoint analysis as an instrument of market research practice. In A. Gustafsson, A. Herrmann, & F. Huber (Eds.), Conjoint measurement (pp. 3–34). Berlin: Springer.

    Chapter  Google Scholar 

  26. Hahlweg, K., Heinrichs, N., Kuschel, A., & Feldmann, M. (2008). Therapist-assisted, self-administered bibliotherapy to enhance parental competence: short- and long-term effects. Behavior Modification, 32, 659–681.

    PubMed  Article  Google Scholar 

  27. Huang, G. H., & Bandeen-Roche, K. (2004). Building an identifiable latent class model with covariate effects on underlying and measured variables. Psychometrika, 69, 5–32.

    Article  Google Scholar 

  28. Huber, J., Orme, B. K., & Miller, R. (2007). Dealing with product similarity in conjoint simulations. In A. Gustafsson, A. Herrmann, & F. Huber (Eds.), Conjoint measurement: Methods and applications (4th ed., pp. 347–362). New York: Springer.

    Chapter  Google Scholar 

  29. Jensen, P. S., Goldman, E., Offord, D., Costello, E. J., Friedman, R., Huff, B., et al. (2011). Overlooked and underserved: “action signs” for identifying children with unmet mental health needs. Pediatrics, 128, 970–979.

    PubMed  Article  Google Scholar 

  30. Johnston, C., Scoular, D. J., & Ohan, J. L. (2004). Mothers’ reports of parenting in families of children with symptoms of attention-deficit/hyperactivity disorder: relations to impression management. Child & Family Behavior Therapy, 26, 45–61.

    Article  Google Scholar 

  31. Johnston, C., Seipp, C., Hommersen, P., Hoza, B., & Fine, S. (2005). Treatment choices and experiences in attention deficit and hyperactivity disorder: relations to parents’ beliefs and attributions. Child: Care, Health and Development, 31, 669.

    Article  Google Scholar 

  32. Kaminski, J. W., Valle, L. A., Filene, J. H., & Boyle, C. L. (2008). A meta-analytic review of components associated with parent training program effectiveness. Journal of Abnormal Child Psychology, 36, 567–589.

    PubMed  Article  Google Scholar 

  33. Kazdin, A. E., & Wassell, G. (1999). Barriers to treatment participation and therapeutic change among children referred for conduct disorder. Journal of Clinical Child Psychology, 28, 160–172.

    PubMed  Article  Google Scholar 

  34. Koch-Weser, S., Bradshaw, Y. S., Gualtieri, L., & Gallagher, S. S. (2010). The internet as a health information source: findings from the 2007 health information national trends survey and implications for health communication. Journal of Health Communication, 15, 279–293.

    PubMed  Article  Google Scholar 

  35. Lanza, S. T., & Rhoades, B. L. (2011). Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prevention Science, 1–12.

  36. Louviere, J. J., Hensher, D. A., & Swait, J. D. (2007). Conjoint preference elicitation methods in the broader context of random utility theory preference elicitation methods. In A. Gustafsson, A. Herrmann, & F. Huber (Eds.), Conjoint measurement–methods and applications (4th ed., pp. 167–197). New York: Springer.

    Chapter  Google Scholar 

  37. McGrath, P. J., Lingley-Pottie, P., Thurston, C., MacLean, C., Cunningham, C., Waschbusch, D. A., et al. (2011). Telephone-based mental health interventions for child disruptive behavior or anxiety disorders: randomized trials and overall analysis. Journal of the American Academy of Child and Adolescent Psychiatry, 50, 1162–1172.

    PubMed  Article  Google Scholar 

  38. McKay, M. M., & Bannon, W. M., Jr. (2004). Engaging families in child mental health services. Child and Adolescent Psychiatric Clinics of North America, 13, 905–921.

    PubMed  Article  Google Scholar 

  39. Mendenhall, A. N., Fristad, M. A., & Early, T. J. (2009). Factors influencing service utilization and mood symptom severity in children with mood disorders: effects of multifamily psychoeducation groups (MFPGs). Journal of Consulting and Clinical Psychology, 77, 463–473.

    PubMed  Article  Google Scholar 

  40. Montgomery, P., Bjornstad, G., Dennis, J. (2008). Media-based behavioural treatments for behavioural problems in children. Cochrane Database of Systematic Reviews (Online), 1.

  41. Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: a Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569.

    Article  Google Scholar 

  42. Orme, B. K. (2009). Getting started with conjoint analysis: Strategies for product design and pricing research (2nd ed.). Madison: Research Publishers.

    Google Scholar 

  43. Orme, B. K., & Huber, J. (2000). Improving the value of conjoint simulations. Marketing Research, 12, 12–20.

    Google Scholar 

  44. Owens, P. L., Hoagwood, K., Horwitz, S. M., Leaf, P. J., Poduska, J. M., Kellam, S. G., et al. (2002). Barriers to children’s mental health services. Journal of the American Academy of Child and Adolescent Psychiatry, 41, 731–738.

    PubMed  Article  Google Scholar 

  45. Patterson, M., & Chrzan, K. (2003). Partial profile discrete choice: What’s the optimal number of attributes? 10th Sawtooth Software Conference Proceedings, San Antonio, TX. 173–185.

  46. Phillips, K. A., Johnson, F. R., & Maddala, T. (2002). Measuring what people value: a comparison of “attitude” and “preference” surveys. Health Services Research, 37, 1659–1679.

    PubMed  Article  Google Scholar 

  47. Prinz, R. J., & Miller, G. E. (1994). Family-based treatment for childhood antisocial behavior: experimental influences on dropout and engagement. Journal of Consulting and Clinical Psychology, 62, 645–650.

    PubMed  Article  Google Scholar 

  48. Reid, G. J., & Brown, J. B. (2008). Money, case complexity, and wait lists: perspectives on problems and solutions at children’s mental health centers in Ontario. The Journal of Behavioral Health Services & Research, 35, 334–346.

    Article  Google Scholar 

  49. Reid, G. J., Cunningham, C. E., Tobon, J. I., Evans, B., Stewart, M., Brown, J. B., et al. (2011). Help-seeking for children with mental health problems: parents’ efforts and experiences. Administration and Policy in Mental Health, 38, 384–397.

    PubMed  Article  Google Scholar 

  50. Ryan, M., Gerard, K., & Amaya-Amaya, M. (2007). Using discrete choice experiments to value health and health care. Netherlands: Springer.

    Google Scholar 

  51. Sawtooth Software Inc. (2008). CBC 6.0 technical paper. Sawtooth Software Technical Paper Series, 1, 1–27.

    Google Scholar 

  52. Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: an effort-reduction framework. Psychological Bulletin, 134, 207–222.

    PubMed  Article  Google Scholar 

  53. Shanley, D. C., Reid, G. J., & Evans, B. (2008). How parents seek help for children with mental health problems. Administration and Policy in Mental Health, 35, 135–146.

    PubMed  Article  Google Scholar 

  54. Swartz, H. A., Shear, M. K., Wren, F. J., Greeno, C. G., Sales, E., Sullivan, B. K., et al. (2005). Depression and anxiety among mothers who bring their children to a pediatric mental health clinic. Psychiatric Services, 56, 1077–1083.

    PubMed  Article  Google Scholar 

  55. Swift, J. K., Callahan, J. L., & Vollmer, B. M. (2011). Preferences. Journal of Clinical Psychology, 67, 155–165.

    PubMed  Article  Google Scholar 

  56. Taylor, T. K., Webster-Stratton, C., Feil, E. G., Broadbent, B., Widdop, C. S., & Severson, H. H. (2008). Computer-based intervention with coaching: an example using the incredible years program. Cognitive Behaviour Therapy, 37, 233–246.

    PubMed  Article  Google Scholar 

  57. Tourangeau, R., & Yan, T. (2007). Sensitive questions in surveys. Psychological Bulletin, 133, 859–883.

    PubMed  Article  Google Scholar 

  58. Vermunt, J. K. (2010). Latent class modeling with covariates: two improved three-step approaches. Political Analysis, 18, 450–469.

    Article  Google Scholar 

  59. Vermunt, J. K., & Magidson, J. (2005a). Latent GOLD® choice 4.0 user’s manual. Belmont: Statistical Innovations Inc.

    Google Scholar 

  60. Vermunt, J. K., & Magidson, J. (2005b). Technical guide for latent GOLD 4.0: Basic and advanced. Belmont: Statistical Innovations Inc.

    Google Scholar 

  61. Vick, S., & Scott, A. (1998). Agency in health care. Examining patients’ preferences for attributes of the doctor-patient relationship. Journal of Health Economics, 17, 587–605.

    PubMed  Article  Google Scholar 

  62. Waschbusch, D. A., Cunningham, C. E., Pelham, W. E., Jr., Rimas, H., Greiner, A. R., Gnagy, E. M., et al. (2011). A discrete choice conjoint experiment to evaluate preferences for treatment of young, medication naive children with ADHD. Journal of Clinical Child and Adolescent Psychology, 40, 546–561.

    PubMed  Article  Google Scholar 

  63. Webster-Stratton, C. (1994). Advancing videotape parent training: a comparison study. Journal of Consulting and Clinical Psychology, 62, 583–593.

    PubMed  Article  Google Scholar 

  64. Werba, B. E., Eyberg, S. M., Boggs, S. R., & Algina, J. (2006). Predicting outcome in parent–child interaction therapy: success and attrition. Behavior Modification, 30, 618–646.

    PubMed  Article  Google Scholar 

  65. Yang, C. C., & Yang, C. C. (2007). Separating latent classes by information criteria. Journal of Classification, 24(2), 183–203.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles E. Cunningham.

Additional information

This project was funded by the Canadian Institutes of Health Research. Charles Cunningham’s participation was supported by the Jack Laidlaw Chair in Patient-Centred Health at McMaster University Faculty of Health Sciences. Patrick McGrath was supported by a Canada Research Chair. Graham Reid was supported by the Children’s Health Foundation. The authors acknowledge the research support provided by Stephanie Mielko, Amanda Holding, Sophia Fanourgiakis, Matt Horner, Kayley Brunsdon, and Lauren Mak. David Streiner and Richard McCollough provided helpful statistical consultation.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cunningham, C.E., Chen, Y., Deal, K. et al. The Interim Service Preferences of Parents Waiting for Children’s Mental Health Treatment: A Discrete Choice Conjoint Experiment. J Abnorm Child Psychol 41, 865–877 (2013). https://doi.org/10.1007/s10802-013-9728-x

Download citation

Keywords

  • Waiting lists
  • Children’s mental health
  • Parents
  • Preferences
  • Discrete choice conjoint experiment