Journal of Abnormal Child Psychology

, Volume 37, Issue 7, pp 929–943 | Cite as

Modeling the Bullying Prevention Program Preferences of Educators: A Discrete Choice Conjoint Experiment

  • Charles E. Cunningham
  • Tracy Vaillancourt
  • Heather Rimas
  • Ken Deal
  • Lesley Cunningham
  • Kathy Short
  • Yvonne Chen


We used discrete choice conjoint analysis to model the bullying prevention program preferences of educators. Using themes from computerized decision support lab focus groups (n = 45 educators), we composed 20 three-level bullying prevention program design attributes. Each of 1,176 educators completed 25 choice tasks presenting experimentally varied combinations of the study’s attribute levels. Latent class analysis yielded three segments with different preferences. Decision Sensitive educators (31%) preferred that individual schools select bullying prevention programs. In contrast, Support Sensitive educators (51%) preferred that local school boards chose bullying prevention programs. This segment preferred more logistical and social support at every stage of the adoption, training, implementation, and long term maintenance processes. Cost Sensitive educators (16%) showed a stronger preference for programs minimizing costs, training, and implementation time demands. They felt prevention programs were less effective and that the time and space in the curriculum for bullying prevention was less adequate. They were less likely to believe that bullying prevention was their responsibility and more likely to agree that prevention was the responsibility of parents. All segments preferred programs supported by the anecdotal reports of colleagues from other schools rather than those based on scientific evidence. To ensure that the bullying prevention options available reflect the complex combination of attributes influencing real world adoption decisions, program developers need to accommodate the differing views of the Decision, Support, and Cost Sensitive segments while maximizing the support of parents and students.


Bullying Prevention Conjoint analysis Preferences School 


  1. Allenby, G. M., Arora, N., & Gintner, J. L. (1995). Incorporating prior knowledge into the analysis of conjoint studies. JMR, Journal of Marketing Research, 32, 152–162. doi: 10.2307/3152044.CrossRefGoogle Scholar
  2. Armitage, C. J., & Conner, M. (2001). Efficacy of the theory of planned behaviour: a meta-analytic review. The British Journal of Social Psychology, 40(4), 471–499. doi: 10.1348/014466601164939.PubMedCrossRefGoogle Scholar
  3. Arseneault, L., Walsh, E., Trzesniewski, K., Newcombe, R., Caspi, A., & Moffitt, T. E. (2006). Bullying victimization uniquely contributes to adjustment problems in young children: a nationally representative cohort study. Pediatrics, 118(1), 130–138. doi: 10.1542/peds.2005-2388.PubMedCrossRefGoogle Scholar
  4. Barbour, R. S. (1999). The case for combining qualitative and quantitative approaches in health services research. Journal of Health Services Research & Policy, 4(1), 39–43.Google Scholar
  5. Caruso, E. M., Rahnev, D. A., & Banaji, M. R. (2009). Using conjoint analysis to detect discrimination: revealing covert preferences from overt choices. Social Cognition, 27(1), 128–137. doi: 10.1521/soco.2009.27.1.128.CrossRefGoogle Scholar
  6. Coast, J. (1999). The appropriate uses of qualitative methods in health economics. Health Economics, 8(4), 345–353. doi: 10.1002/(SICI)1099-1050(199906)8:4<345::AID-HEC432>3.0.CO;2-Q.PubMedCrossRefGoogle Scholar
  7. Craig, W. M., Pepler, D., & Atlas, R. (2000). Observations of bullying in the playground and in the classroom. School Psychology International, 21(1), 22–36. doi: 10.1177/0143034300211002.CrossRefGoogle Scholar
  8. Cunningham, C. E., Deal, K., Rimas, H., Buchanan, D. H., Gold, M., Sdao-Jarvie, K., et al. (2008). Modeling the information preferences of parents of children with mental health problems: a discrete choice conjoint experiment. Journal of Abnormal Child Psychology, 7(36), 1128–1138.Google Scholar
  9. Cunningham, C. E., Vaillancourt, T., Cunningham, L. J., & Short, K. (2009). The bullying prevention attitudes scale. Unpublished manuscript.Google Scholar
  10. Cunningham, C. E., Cunningham, L. J., Martorelli, V., Tran, A., Young, J., & Zacharias, R. (1998). The effects of primary division, student-mediated conflict resolution programs on playground aggression. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 39(5), 653–662. doi: 10.1017/S0021963098002558.PubMedCrossRefGoogle Scholar
  11. Cunningham, C. E., Woodward, C. A., Shannon, H. S., MacIntosh, J., Lendrum, B., Rosenbloom, D., et al. (2002). Readiness for organizational change: a longitudinal study of workplace, psychological and behavioural correlates. Journal of Occupational and Organizational Psychology, 75(4), 377–392. doi: 10.1348/096317902321119637.CrossRefGoogle Scholar
  12. DeSarbo, W. S., Ramaswamy, V., & Cohen, S. H. (1995). Market segmentation with choice-based conjoint analysis. Marketing Letters, 6(2), 137–147. doi: 10.1007/BF00994929.CrossRefGoogle Scholar
  13. Elias, M. J., Zins, J. E., Graczyk, P. A., & Weissberg, R. P. (2003). Implementation, sustainability, and scaling up of social-emotional and academic innovations in public schools. School Psychology Review, 32(3), 303–320.Google Scholar
  14. Fagan, A. A., & Mihalic, S. (2003). Strategies for enhancing the adoption of school-based prevention programs: lessons learned from the blueprints for violence prevention replications of the life skills training program. Journal of Community Psychology, 31(3), 235–253. doi: 10.1002/jcop.10045.CrossRefGoogle Scholar
  15. Fekkes, M., Pijpers, F. I., & Verloove-Vanhorick, S. P. (2006). Effects of antibullying school program on bullying and health complaints. Archives of Pediatrics & Adolescent Medicine, 160(6), 638–644. doi: 10.1001/archpedi.160.6.638.CrossRefGoogle Scholar
  16. Frey, K. S., Hirschstein, M. K., Snell, J. L., Edstrom, L. V., MacKenzie, E. P., & Broderick, C. J. (2005). Reducing playground bullying and supporting beliefs: an experimental trial of the steps to respect program. Developmental Psychology, 41(3), 479–490. doi: 10.1037/0012-1649.41.3.479.PubMedCrossRefGoogle Scholar
  17. Gamage, J., & Weerahandi, S. (1998). Size performance of some tests in one-way anova. Communications in Statistics Simulation and Computation, 27(3), 625–640. doi: 10.1080/03610919808813500.CrossRefGoogle Scholar
  18. Greenberg, M. T. (2004). Current and future challenges in school-based prevention: the researcher perspective. Prevention Science, 5(1), 5–13. doi: 10.1023/B:PREV.0000013976.84939.55.PubMedCrossRefGoogle Scholar
  19. Greenberg, M. T., Weissberg, R. P., O’Brien, M. U., Zins, J. E., Fredericks, L., Resnik, H., et al. (2003). Enhancing school-based prevention and youth development through coordinated social, emotional, and academic learning. The American Psychologist, 58(6–7), 466–474. doi: 10.1037/0003-066X.58.6-7.466.PubMedCrossRefGoogle Scholar
  20. Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., & Kyriakidou, O. (2004). Diffusion of innovations in service organizations: systematic review and recommendations. The Milbank Quarterly, 82(4), 581–629. doi: 10.1111/j.0887-378X.2004.00325.x.PubMedCrossRefGoogle Scholar
  21. Gregory, A., Henry, D. B., & Schoeny, M. E. (2007). School climate and implementation of a preventive intervention. American Journal of Community Psychology, 40(3–4), 250–260. doi: 10.1007/s10464-007-9142-z.PubMedCrossRefGoogle Scholar
  22. Gustafsson, A., Herrmann, A., & Huber, F. (2007). Conjoint analysis as an instrument of market research practice. In A. Gustafsson, A. Herrmann & F. Huber (Eds.), Conjoint measurement (pp. 3–34). Berlin, Germany: Springer.CrossRefGoogle Scholar
  23. Hensher, D. A., Rose, J. M., & Greene, W. H. (2005). Applied choice analysis A primer. New York-U.S.A.: Cambridge University Press.Google Scholar
  24. Hoagwood, K., & Johnson, J. (2003). School psychology: a public health framework I. From evidence-based practices to evidence-based policies. Journal of School Psychology, 41(1), 3–21. doi: 10.1016/S0022-4405(02)00141-3.CrossRefGoogle Scholar
  25. Huber, J., Orme, B., & Miller, R. (2007). Dealing with product similarity in conjoint simulations. In A. Gustafsson, A. Herrmann & F. Huber (Eds.), Conjoint measurement: methods and applications (4th ed., pp. 347–362). New York: Springer.Google Scholar
  26. Kallestad, J. H. (2003). Predicting teachers’ and schools’ implementation of the olweus bullying prevention program: a multilevel study. Prevention & Treatment, 6, 3–21.CrossRefGoogle Scholar
  27. Kim, Y. S., Leventhal, B. L., Koh, Y. J., Hubbard, A., & Boyce, W. T. (2006). School bullying and youth violence: causes or consequences of psychopathologic behavior? Archives of General Psychiatry, 63(9), 1035–1041. doi: 10.1001/archpsyc.63.9.1035.PubMedCrossRefGoogle Scholar
  28. Lenk, P. J., DeSarbo, W. S., Green, P. E., & Young, M. R. (1996). Hierarchical bayes conjoint analysis: recovery of partworth heterogeneity from reduced experimental designs. Marketing Science, 15(2), 173–192. doi: 10.1287/mksc.15.2.173.CrossRefGoogle Scholar
  29. Lochman, J. E. (2003). Commentary: school contextual influences on the dissemination of interventions. School Psychology Review, 32(2), 174–178.Google Scholar
  30. Louviere, J., Hensher, D., & Swait, J. (2007). Conjoint preference elicitation methods in the broader context of random utility theory preference elicitation methods. In A. Gustafsson, A. Herrmann & F. Huber (Eds.), Conjoint measurement-methods and applications (4th ed., pp. 167–197). New York: Springer.Google Scholar
  31. Luce, R. D., & Tukey, J. W. (1964). Simultaneous conjoint measurement: a new type of fundamental measurement. Journal of Mathematical Psychology, 1(1), 1–27. doi: 10.1016/0022-2496(64)90015-X.CrossRefGoogle Scholar
  32. Merrell, K. W., & Isava, D. M. (2008). How effective are school bullying intervention programs? School Psychology Quarterly, 23(1), 26–42. doi: 10.1037/1045-3830.23.1.26.CrossRefGoogle Scholar
  33. Midthassel, U. V. (2008). Is the sustainability of reduction in bullying related to follow-up procedures? Educational Psychology, 28(1), 1–13. doi: 10.1080/01443410701449278.CrossRefGoogle Scholar
  34. Mytton, J., DiGuiseppi, C., Gough, D., Taylor, R., & Logan, S. (2006). School-based secondary prevention programmes for preventing violence. Cochrane Database of Systematic Reviews (Online), 3. doi:10.1002/14651858.CD004606.pub2.
  35. Olweus, D. (1994). Bullying at school: basic facts and effects of a school based intervention program. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 35(7), 1171–1190. doi: 10.1111/j.1469-7610.1994.tb01229.x.PubMedCrossRefGoogle Scholar
  36. Orme, B. K. (2006). Getting started with conjoint analysis: strategies for product design and pricing research. Madison: Research Publishers.Google Scholar
  37. Patterson, M., & Chrzan, K. (2004). Partial profile discrete choice: what’s the optimal number of attributes? (pp. 173–185). San Antonio, TX: 2003 Sawtooth Software Conference Proceedings.Google Scholar
  38. Payne, A. A., Gottfredson, D. C., & Gottfredson, G. D. (2006). School predictors of the intensity of implementation of school-based prevention programs: results from a national study. Prevention Science, 7(2), 225–237. doi: 10.1007/s11121-006-0029-2.PubMedCrossRefGoogle Scholar
  39. Perkins, M. B., Jensen, P. S., Jaccard, J., Gollwitzer, P., Oettingen, G., Pappadopulos, E., et al. (2007). Applying theory-driven approaches to understanding and modifying clinicians’ behavior: what do we know? Psychiatric Services (Washington, D.C.), 58(3), 342–348. doi: 10.1176/ Scholar
  40. Phillips, K. A., Johnson, F. R., & Maddala, T. (2002). Measuring what people value: a comparison of “attitude” and “preference” surveys. Health Services Research, 37(6), 1659–1679. doi: 10.1111/1475-6773.01116.PubMedCrossRefGoogle Scholar
  41. Ramaswamy, V., & Cohen, S. H. (2007). Latent class models for conjoint analysis. In A. Gustafsson, A. Herrmanm & F. Huber (Eds.), Conjoint measurement methods and applications (4th ed., pp. 295–320). Heidelberg: Springer.Google Scholar
  42. Ringeisen, H., Henderson, K., & Hoagwood, K. (2003). Context matters: schools and the “research to practice gap” in children’s mental health. School Psychology Review, 32(2), 153–169.Google Scholar
  43. Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free.Google Scholar
  44. Rones, M., & Hoagwood, K. (2000). School-based mental health services: a research review. Clinical Child and Family Psychology Review, 3(4), 223–241. doi: 10.1023/A:1026425104386.PubMedCrossRefGoogle Scholar
  45. Ryan, M., Gerard, K., & Amaya-Amaya, M. (2007). Using discrete choice experiments to value health and health care. Netherlands: Springer.CrossRefGoogle Scholar
  46. Ryan, M., Scott, D. A., Reeves, C., Bate, A., van Teijlingen, E. R., Russell, E. M., et al. (2001). Eliciting public preferences for healthcare: a systematic review of techniques. Health Technology Assessment, 5(5), 1–186.PubMedGoogle Scholar
  47. Sawtooth Software Inc. (2004a). The CBC/HB system for hierarchical bayes estimation version 4.0 technical paper. Sawtooth Software Technical Paper Series. Retrieved from
  48. Sawtooth Software Inc. (2004b). The CBC latent class technical paper (version 3). Sawtooth Software Technical Paper Series. Retrieved from
  49. Schoenwald, S. K., & Hoagwood, K. (2001). Effectiveness, transportability, and dissemination of interventions: what matters when? Psychiatric Services (Washington, D.C.), 52(9), 1190. doi: 10.1176/ Scholar
  50. Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: an effort-reduction framework. Psychological Bulletin, 134(2), 207. doi: 10.1037/0033-2909.134.2.207.PubMedCrossRefGoogle Scholar
  51. Shapiro, D., & Brett, J. (2005). What is the role of control in organizational justice? In J. Greenberg & J. Colquitt (Eds.), Handbook of organizational justice (pp. 155–178). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  52. Shinn, M. (2003). Understanding implementation of programs in multilevel systems. Prevention & Treatment, 6(1), 22. doi: 10.1037/1522-3736.6.1.622c.CrossRefGoogle Scholar
  53. Spoth, R., Greenberg, M., Bierman, K., & Redmond, C. (2004). PROSPER community-university partnership model for public education systems: capacity-building for evidence-based, competence-building prevention. Prevention Science, 5(1), 31–39. doi: 10.1023/B:PREV.0000013979.52796.8b.PubMedCrossRefGoogle Scholar
  54. Spoth, R., & Redmond, C. (1993). Identifying program preferences through conjoint analysis: illustrative results from a parent sample. American Journal of Health Promotion, 8(2), 124–133.PubMedGoogle Scholar
  55. Vreeman, R. C., & Carroll, A. E. (2007). A systematic review of school-based interventions to prevent bullying. Archives of Pediatrics & Adolescent Medicine, 161(1), 78–88. doi: 10.1001/archpedi.161.1.78.CrossRefGoogle Scholar
  56. Vriens, M., Wedel, M., & Wilms, T. (1996). Metric conjoint segmentation methods: a Monte Carlo comparison. JMR, Journal of Marketing Research, 33(1), 73–85. doi: 10.2307/3152014.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Charles E. Cunningham
    • 1
  • Tracy Vaillancourt
    • 2
    • 3
  • Heather Rimas
    • 4
  • Ken Deal
    • 4
  • Lesley Cunningham
    • 5
  • Kathy Short
    • 5
  • Yvonne Chen
    • 4
  1. 1.Offord Centre for Child Studies, McMaster Children’s HospitalMcMaster UniversityHamiltonCanada
  2. 2.University of OttawaOttawaCanada
  3. 3.Offord Centre for Child StudiesMcMaster UniversityHamiltonCanada
  4. 4.McMaster UniversityHamiltonCanada
  5. 5.Hamilton-Wentworth District School BoardHamiltonCanada

Personalised recommendations