Journal of Abnormal Child Psychology

, Volume 33, Issue 5, pp 639–654 | Cite as

Time Perception: Modality and Duration Effects in Attention-Deficit/Hyperactivity Disorder (ADHD)

Article

Abstract

Time perception performance was systematically investigated in adolescents with and without attention-deficit/hyperactivity disorder (ADHD). Specifically, the effects of manipulating modality (auditory and visual) and length of duration (200 and 1000 ms) were examined. Forty-six adolescents with ADHD and 44 controls were administered four duration discrimination tasks and two control tasks, and a set of standardized measures. Participants with ADHD had higher thresholds than controls on all of the duration discrimination tasks, with the largest effect size obtained on the visual 1000 ms duration discrimination task. No group differences were observed on the control tasks. Visual–spatial memory was found to be a significant predictor of visual and auditory duration discrimination at longer intervals (1000 ms) in the ADHD sample, whereas auditory verbal working memory predicted auditory discrimination at longer intervals (1000 ms) in the control sample. These group differences suggest impairments in basic timing mechanisms in ADHD.

Key Words

time perception duration discrimination working memory modality attention-deficit/ hyperactivity disorder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders (4th ed.) Text Revision (DSM-IV-TR). Washington, DC: American Psychiatric Association.Google Scholar
  2. Ashcraft, M. H. (2002). Cognition (3rd ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  3. Barkley, R. A. (1998). Attention-deficit hyperactivity disorder: 2nd Edn. New York: The Guilford Press.Google Scholar
  4. Barkley, R. A. (1997a). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121, 65–94.CrossRefGoogle Scholar
  5. Barkley, R. A. (1997b). ADHD and the nature of self-control. New York: Guilford Press.Google Scholar
  6. Barkley, R. A., Edwards, G., Laneri, M., Fletcher, K., & Metevia, L. (2001a). Executive functioning, temporal discounting, and sense of time in adolescents with Attention Deficit Hyperactivity Disorder (ADHD) and Oppositional Defiant Disorder (ODD). Journal of Abnormal Child Psychology, 29, 541–556.CrossRefGoogle Scholar
  7. Barkley, R. A., Koplowitz, S., Anderson, T., & McMurray, M. B. (1997). Sense of time in children with ADHD: Effects of duration, distraction, and stimulant medication. Journal of the International Neuropsychological Society, 3, 359–369.PubMedGoogle Scholar
  8. Barkley, R. A., Murphy, K. R., & Bush, T. (2001b). Time perception and reproduction in young adults with attention deficit hyperactivity disorder. Neuropsychology, 15, 351–360.CrossRefGoogle Scholar
  9. Barnett, R., Maruff, P., Vance, A., Luk, E. S. L., Costin, J., Wood, C., & Pantelis, C. (2001). Abnormal executive function in attention deficit hyperactivity disorder: The effect of stimulant medication and age on spatial working memory. Psychological Medicine, 31, 1107–1115.CrossRefPubMedGoogle Scholar
  10. Berquin, P. C., Giedd, J. N., Jacobsen, L. K., Hamburger, S. D., Krain, A. L., Rapoport, J. L., Castellanos, F. X. (1998). Cerebellum in attention-deficit hyperactivity disorder: A morphometric study. Neurology, 50, 1087–1093.PubMedGoogle Scholar
  11. Briscoe, J., Bishop, D. V. M., & Norbury, C. F. (2001). Phonological processing, language, and literacy: A comparison of children with mild-to-moderate sensorineural hearing loss and those with specific language impairment. Journal of Child Psychology and Psychiatry, 42, 329–340.CrossRefPubMedGoogle Scholar
  12. Carte, E. T., Nigg, J. T., & Hinshaw, S. P. (1996). Neuropsychological functioning, motor speed, and language processing in boys with and without ADHD. Journal of Abnormal Child Psychology, 24, 481–498.CrossRefPubMedGoogle Scholar
  13. Casini, L., & Ivry, R. B. (1999). Effects of divided attention on temporal processing in patients with lesions of the cerebellum or frontal lobe. Neuropsychology, 3, 10–21.CrossRefGoogle Scholar
  14. Castellanos, F. X., Giedd, J. N., Berquin, P. C., Walter, J. M., Sharp, W., Tran, T., Vaituzis, A. C., Blumenthal, J. D., Nelson, J., Bastain, T. M., Zijdenbos, A., Evans, A. C., & Rapoport, J. L. (2001). Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Archives of General Psychiatry, 58, 289–295.CrossRefPubMedGoogle Scholar
  15. Castellanos, F. X., & Tannock, R. (2002). Neuroscience of Attention-Deficit/Hyperactivity Disorder: The search for endophenotypes. Nature Reviews: Neuroscience, 3, 1–12.Google Scholar
  16. Chen, Y., Repp, B. H., & Patel, A. D. (2002). Spectral decomposition of variability in synchronization and continuation tapping: Comparisons between auditory and visual pacing and feedback conditions. Human Movement Science, 21, 515–532.CrossRefPubMedGoogle Scholar
  17. Chhabildas, N., Pennington, B. F., & Willcutt, E. G. (2001). A comparison of the neuropsychological profiles of the DSM-IV subtypes of ADHD. Journal of Abnormal Child Psychology, 29, 529–540.Google Scholar
  18. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.CrossRefGoogle Scholar
  19. Conners, C. K. (1997). Conners' rating scales-revised: Technical manual. New York: Multi-Health Systems Inc.Google Scholar
  20. Denckla, M. B., & Rudel, R. G. (1978). Anomalies in motor development in hyperactive boys. Annals of Neurology, 3, 231–233.CrossRefPubMedGoogle Scholar
  21. Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 71, 44–56.CrossRefPubMedGoogle Scholar
  22. Durston, S., Tottenham, N. T., Thomas, K. M., Davidson, M. C., Eigsti, I. M., Yang, Y., Ulug, A. M., & Casey, B. J. (2003). Differential patterns of striatal activation in young children with and without ADHD. Biological Psychiatry, 53, 871–878.CrossRefPubMedGoogle Scholar
  23. Fortin, C., & Couture, E. (2002). Short-term memory and time estimation: Beyond the 2-second “critical” value. Canadian Journal of Experimental Psychology, 56, 120–127.PubMedGoogle Scholar
  24. Heim, S., Freeman, R. B., Eulitz, C., & Elbert, T. (2001). Auditory temporal processing deficit in dyslexia is associated with enhanced sensitivity in the visual modality. Neuroreport, 12, 507–510.CrossRefPubMedGoogle Scholar
  25. Hetherington, R., Dennis, M., & Spiegler, B. (2000). Perception and estimation of time in long-term survivors of childhood posterior fossa tumors. Journal of the International Neuropsychological Society, 6, 682–692.CrossRefPubMedGoogle Scholar
  26. Ivry, R. B. (1996). The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 6, 851–857.CrossRefPubMedGoogle Scholar
  27. Ivry, R. B., & Fiez, J. A. (2000). Cerebellar contributions to cognition and imagery. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences (2nd ed.). Cambridge, MA: MIT Press, pp. 999–1011.Google Scholar
  28. Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1, 136–152.Google Scholar
  29. Ivry, R. B., & Spencer, R. M. C. (2004). The neural representation of time. Current Opinion in Neurobiology, 14, 225–232.CrossRefPubMedGoogle Scholar
  30. Kaplan, E., Fein, D., Kramer, J., Delis, D., & Morris, R. (1999). WISC-III-PI Manual. The Psychological Corporation: USA.Google Scholar
  31. Kaufman, J., Birmaher, B., Brent, D., Rao, U., & Ryan, N. (1997) Schedule for affective disorders and schizophrenia for school-age children—Present and Lifetime Version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 980–988.CrossRefPubMedGoogle Scholar
  32. Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. The Journal of Neuroscience, 23, 8432–8444.PubMedGoogle Scholar
  33. Kempton, S., Vance, A., Maruff, P., Luk, E., Costin, J., & Pantelis, C. (1999). Executive function and attention deficit hyperactivity disorder: Stimulant medication and better executive function performance in children. Psychological Medicine, 29, 527–538.CrossRefPubMedGoogle Scholar
  34. Kerns, K. A., McInerney, R. J., & Wilde, N. J. (2001). Time reproduction, working memory, and behavioral inhibition in children with ADHD. Child Neuropsychology, 7, 21–31.PubMedGoogle Scholar
  35. Kuntsi, J., Eley, T. C., Taylor, A., Hughes, C., Asherson, P., Caspi, A., & Moffitt, T. E. (2004). Co-occurrence of ADHD and low IQ has genetic origins. American Journal of Medical Genetics Part B, 124B, 41–47.CrossRefGoogle Scholar
  36. Lalonde, R., & Hannequin, D. (1999). The neurobiological basis of time estimation and temporal order. Reviews in the Neurosciences, 10, 151–173.PubMedGoogle Scholar
  37. Lovett, M. W., & Barron, R. W. (2003). Neuropsychological perspectives on reading development and developmental reading disorders. In S. J. Segalowitz & I. Rapin (Eds.), Handbook of neuropsychology (2nd ed.). Amsterdam: Elsevier Science.Google Scholar
  38. Mangels, J. A., & Ivry, R. B. (2001). Time perception. In B. Rapp (Ed.), The handbook of cognitive neuropsychology: What deficits reveal about the human mind. PA, USA: Psychology Press.Google Scholar
  39. Mangels, J. A., Ivry, R. B., & Shimizu, N. (1998). Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cognitive Brain Research, 7, 15–39.CrossRefPubMedGoogle Scholar
  40. Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with Attention-Deficit Hyperactivity Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 44(4), 377–384.CrossRefPubMedGoogle Scholar
  41. Nicolson, R. I., Daum, I., Schugens, M. M., Fawcett, A. J., & Schulz, A. (2002). Eyeblink conditioning indicates cerebellar abnormality in dyslexia. Experimental Brain Research, 143, 42–50.CrossRefGoogle Scholar
  42. Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: The cerebellar deficit hypothesis. Trends in Neurosciences, 24, 508–511.CrossRefPubMedGoogle Scholar
  43. Nicolson, R. I., Fawcett, A. J., & Dean, P. (1995). Time estimation deficits in developmental dyslexia: Evidence for cerebellar involvement. Proceedings of the Royal Society, 259, 43–47.Google Scholar
  44. Nigg, J. T. (2001). Is ADHD a disinhibitory disorder? Psychological Bulletin, 127, 571–598.CrossRefPubMedGoogle Scholar
  45. Nigg, J. T., Blaskey, L. G., Huang-Pollock, C. L., & Rappley, M .D. (2002). Neurospychological executive functions and DSM-IV ADHD subtypes. Journal of the American Academy of Child and Adolescent Psychiatry, 41, 59–66.CrossRefPubMedGoogle Scholar
  46. Penhune, V. B., Zatorre, R. J., & Evans, A. C. (1998). Cerebellar contributions to motor timing: A PET study of auditory and visual rhythm reproduction. Journal of Cognitive Neuroscience, 10, 752–765.CrossRefPubMedGoogle Scholar
  47. Pennington, B. F., Cardosa-Martins, C., Green, P. A., & Lefly, D. L. (2001). Comparing the phonological and double deficit hypotheses for developmental dyslexia. Reading and Writing, 14(7–8).CrossRefGoogle Scholar
  48. Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37, 51–87.PubMedGoogle Scholar
  49. Rammsayer, T. H., Hennig, J., Haag, A., & Lange, N. (2001). Effects of noradrenergic activity on temporal information processing in humans. The Quarterly Journal of Experimental Psychology, 54B, 247–258.Google Scholar
  50. Riordan, H. J., Flashman, L. A., Saykin, A. J., Frutiger, S. A., Carroll, K. E., & Huey, L. (1999). Neuropsychological correlates of methylphenidate treatment in adult ADHD with and without depression. Archives of Clinical Neuropsychology, 14, 217–233.CrossRefPubMedGoogle Scholar
  51. Rubia, K., Noorloos, J., Smith, A., Gunning, B., & Sergeant, J. (2003). Motor timing deficits in community and clinical boys with hyperactive behavior: The effect of methylphenidate on motor timing. Journal of Abnormal Child Psychology, 31, 301–313.CrossRefPubMedGoogle Scholar
  52. Rubia, K., Overmeyer, S., Taylor, E., Brammar, M., Williams, S. C. R., Simmons, A., & Bullmore, E. T. (1999a). Hypofrontality in Attention Deficit Hyperactivity Disorder during higher-order motor control: A study with functional MRI. American Journal of Psychiatry, 156(6): 891–896.Google Scholar
  53. Rubia, K., Taylor, A., Taylor, E., & Sergeant, J. A. (1999b). Synchronization, anticipation and consistency of motor timing in dimensionally defined children with attention deficit hyperactivity disorder. Perceptual and Motor Skills, 89, 1237–1258.Google Scholar
  54. Rubia, K., Taylor, E., Smith, A. B., Oksannen, H., Overmeyer, S., & Newman, S. (2001) Neuropsychological analyses of impulsiveness in childhood hyperactivity. British Journal of Psychiatry, 179, 138–143.CrossRefPubMedGoogle Scholar
  55. Rucklidge, J. J., & Tannock, R. (2001). Psychiatric, psychosocial, and cognitive functioning of female adolescents with ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 530–40.CrossRefPubMedGoogle Scholar
  56. Schachar, R., Mota, V. L., Logan, G. D., Tannock, R., & Klim, P. (2000). Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 28, 227–235.CrossRefPubMedGoogle Scholar
  57. Schubotz, R. I., Friederici, A. D., & von Cramon, D. Y. (2000). Time perception and motor timing: A common cortical and subcortical basis revealed by fMRI. Neuroimage, 11, 1–12.CrossRefPubMedGoogle Scholar
  58. Schweitzer, J. B., Lee, D. O., Hanford, R. B., Tagamets, M. A., Hoffman, J. M., Grafton, S. T., & Kilts, C. D. (2003). A positron emission tomography study of methylphenidate in adults with ADHD: Alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology, 28, 967–973.PubMedGoogle Scholar
  59. Sebel, A. J., & Wilsoncroft, W. E. (1983). Auditory and visual differences in time perception. Perceptual and Motor Skills, 57, 295–300.PubMedGoogle Scholar
  60. Semel, E., Wiig, E. H., & Secord, W. A. (1995). Clinical Evaluation of Language Fundamentals—Third Edition: Examiner's Manual. San Antonio, Texas: The Psychological Corporation.Google Scholar
  61. Sergeant, J. A., Geurts, H., & Oosterlaan, J. (2002). How specific is a deficit of executive functioning for Attention-Deficit/Hyperactivity Disorder? Behavioural Brain Research, 130, 3–28.CrossRefPubMedGoogle Scholar
  62. Smith, A., Taylor, E., Lidzba, K., & Rubia, K. (2003). A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. Neuroimage, 20, 344–350.CrossRefPubMedGoogle Scholar
  63. Smith, A., Taylor, E., Warner Rogers, J., Newman, S., & Rubia, K. (2002). Evidence for a pure time perception deficit in children with ADHD. Journal of Child Psychology and Psychiatry, 43, 529–542.CrossRefPubMedGoogle Scholar
  64. Sonuga-Barke, E. J. S. (2002). Psychological heterogeneity in AD/HD—a dual pathway model of behaviour and cognition. Behavioural Brain Research, 130, 29–36.CrossRefPubMedGoogle Scholar
  65. Sonuga-Barke, E. J. S., Saxton, T., & Hall, M. (1998). The role of interval underestimation in hyperactive children's failure to suppress responses over time. Behavioural Brain Research, 94, 45–50.CrossRefPubMedGoogle Scholar
  66. Tabachnick, B. G., Fidell, L. S. (1989). Using multivariate statistics (2nd ed.). New York: Harper Collins.Google Scholar
  67. Tannock, R. (2003). Neuropsychology of attention disorders. In S. J. Segalowitz & I. Rapin (Eds.), Handbook of neuropsychology (2nd ed.). Netherlands: Elsevier Science.Google Scholar
  68. Toplak, M. E., Rucklidge, J. J., Hetherington, R., John, S. C. F., & Tannock, R. (2003). Time perception deficits in Attention-Deficit/Hyperactivity Disorder and Comorbid Reading Difficulties in child and adolescent samples. Journal of Child Psychology and Psychiatry, 44, 888–903.CrossRefPubMedGoogle Scholar
  69. Torgesen, J., Wagner, R., & Rashotte, C. (1999). Test of Word Reading Efficiency (TOWRE). Cognitive Concepts, Inc.Google Scholar
  70. Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). Comprehensive Test of Phonological Processing (CTOPP). Austin, Texas: Pro-Ed.Google Scholar
  71. Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI). USA: The Psychological Corporation.Google Scholar
  72. Wechsler, D. (1991). Wechsler Intelligence Scale for Children—Third Edition. USA: The Psychological Corporation.Google Scholar
  73. Wechsler, D. (1997). Wechsler Adult Intelligence Scale—Third Edition. USA: The Psychological Corporation.Google Scholar
  74. Wetherill, G. B., Levitt, H. (1965). Sequential estimation of points on a psychological function. British Journal of Math and Statistical Psychology, 18, 1–10.Google Scholar
  75. West, J., Douglas, G., Houghton, S., Lawrence, V., Whiting, K., & Glasgow, K. (2000). Time perception in boys with Attention-Deficit/Hyperactivity Disorder according to time duration, distraction and mode of presentation. Child Neuropsychology, 6, 241–250.PubMedGoogle Scholar
  76. Wilkinson, G. S. (1993). WRAT3 Administration Manual. Delaware: Wide Range.Google Scholar
  77. Wolf, M. (1999). What time may tell: Towards a new conceptualization of developmental dyslexia. Annals of Dyslexia, 49, 3–28.Google Scholar
  78. Wolf, M. (2001). Dyslexia, fluency, and the brain. (Edited volume). Timonium, Maryland: York Press, Inc.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Brain and Behaviour Research ProgramResearch Institute of The Hospital for Sick ChildrenOntarioCanada
  2. 2.Brain & Behaviour Research ProgramThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations