Skip to main content
Log in

Incidence hypergraphs: the categorical inconsistency of set-systems and a characterization of quiver exponentials

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

This paper considers the difficulty in the set-system approach to generalizing graph theory. These difficulties arise categorically as the category of set-system hypergraphs is shown not to be cartesian closed and lacks enough projective objects, unlike the category of directed multigraphs (i.e., quivers). The category of incidence hypergraphs is introduced as a “graph-like” remedy for the set-system issues so that hypergraphs may be studied by their locally graphic behavior via homomorphisms that allow an edge of the domain to be mapped into a subset of an edge in the codomain. Moreover, it is shown that the category of quivers embeds into the category of incidence hypergraphs via a logical functor that is the inverse image of an essential geometric morphism between the topoi. Consequently, the quiver exponential is shown to be simply represented using incidence hypergraph homomorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berge, C.: Hypergraphs, North-Holland Mathematical Library, vol. 45, North-Holland Publishing Co., Amsterdam, (1989). Combinatorics of finite sets, Translated from the French

  2. Bondy, J.A., Murty, U.S.R.: Graph theory, Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)

    Google Scholar 

  3. Borceux, F.: Handbook of categorical algebra. 1-3, Encyclopedia of Mathematics and its Applications, vol. 50-52, Cambridge University Press, Cambridge, (1994)

  4. Brown, R., Morris, I., Shrimpton, J., Wensley, C.D.: Graphs of morphisms of graphs, electron. J. Combin. 15(1), 1–28 (2008)

    Article  MATH  Google Scholar 

  5. Bumby, R.T., Latch, D.M.: Categorical constructions in graph theory. Int. J. Math. Math. Sci. 9(1), 1–16 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, G., Liu, V., Robinson, E., Rusnak, L.J., Wang, K.: A characterization of oriented hypergraphic laplacian and adjacency matrix coefficients. Linear Algebra Appl. 556, 323–341 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, V., Rao, A., Rusnak, L.J., Yang, A.: A characterization of oriented hypergraphic balance via signed weak walks. Linear Algebra Appl. 485, 442–453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diestel, Reinhard: Graph theory, Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2010)

    Google Scholar 

  9. Dörfler, W., Waller, D.A.: A category-theoretical approach to hypergraphs. Arch. Math. 34(2), 185–192 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duchet, P.: Hypergraphs, Handbook of combinatorics, vol. 1, 2, Elsevier, Amsterdam, (1995)

  11. El-Zahar, M., Sauer, N.: The chromatic number of the product of two 4-chromatic graphs is 4. Combinatorica 5(2), 121–126 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Grilliette, W.: Injective envelopes and projective covers of quivers. Electron. J. Combin. 19(2), 39 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grilliette, W., Seacrest, D., Seacrest, T.: On blow-ups and injectivity of quivers. Electron. J. Combinatorics. 20(2), 40 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy of cats. Repr. Theory Appl. Categ. vol. 17, Wiley, New York, (2006)

  15. Hilton, P.J., Stammbach, U.: A course in homological algebra, Graduate Texts in Mathematics, vol. 4, Springer-Verlag, (1997)

  16. Johnstone, PT.: Sketches of an elephant: a topos theory compendium. Vol. 1, Oxford Logic Guides, vol. 43, The Clarendon Press, Oxford University Press, New York, (2002)

  17. Mac Lane, S., Moerdijk, I.: Sheaves in geometry and logic, Universitext, Springer-Verlag, New York, (1994), A first introduction to topos theory, Corrected reprint of the 1992 edition

  18. Mac Lane, S.: Categories for the working mathematician, Graduate Texts in Mathematics, vol. 5, Springer-Verlag, (1998)

  19. Montanari, U., Ehrig, H., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of graph grammars and computing by graph transformation. Vol. 3. Concurrency, parallelism, and distribution, World Scientific Publishing Co., Inc., River Edge, NJ, (1999)

  20. Prange, U., Ehrig, H., Ehrig, K., Taentzer, G.: Fundamentals of algebraic graph transformation. Monographs in Theoretical Computer Science, Springer-Verlag, (2006)

  21. Pavel, H., Jaroslav, N.: Graphs and homomorphisms, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, (2004)

  22. Raeburn, I.: Graph algebras, CBMS Regional Conference Series in Mathematics, vol. 103, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, (2005)

  23. Reff, N.: Spectral properties of complex unit gain graphs. Linear Algebra Appl. 436(9), 3165–3176 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reff, N., Rusnak, L.J.: An oriented hypergraphic approach to algebraic graph theory. Linear Algebra Appl. 437(9), 2262–2270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rusnak, L.J., Robinson, E., Schmidt, M., Shroff, P.: Oriented hypergraphic matrix-tree type theorems and bidirected minors via boolean ideals, J. Algebr Comb. (2018)

  26. Rusnak, L.J.: Oriented hypergraphs: introduction and balance. Electron. J. Comb. 20(3), 48 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rydeheard, D.E., Burstall, R.M.: Computational category theory, Prentice Hall International Series in Computer Science, Prentice Hall International, (1988)

  28. Schiffler, R.: Quiver representations. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham (2014)

    Book  MATH  Google Scholar 

  29. Shi, C.J.: A signed hypergraph model of the constrained via minimization problem. Microelectron. J. 23(7), 533–542 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas J. Rusnak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grilliette, W., Rusnak, L.J. Incidence hypergraphs: the categorical inconsistency of set-systems and a characterization of quiver exponentials. J Algebr Comb 58, 1–36 (2023). https://doi.org/10.1007/s10801-023-01232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-023-01232-8

Keywords

Mathematics Subject Classification

Navigation