Skip to main content
Log in

On standard bases of irreducible modules of Terwilliger algebras of Doob schemes

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

For integers \(n \ge 1\) and \(m \ge 0\), let \(D=D(n,m)\) denote the Doob scheme which is the direct product of n copies of Shrikhande graph and m copies of complete graph on four vertices. Let V denote the standard module of D with an inner product \(\langle u, v \rangle = u^t\bar{v}\) where \(^t\) and \(^-\) denote transpose and complex conjugate, respectively. Fix a vertex x of D, and let \(T=T(x)\) denote the Terwilliger algebra of D with respect to x. We view T as a Lie algebra with respect to the usual commutator. Using Tanabe’s results (JAC 6: 173–195, 1997) on characterization of irreducible T-modules, it was shown in (JAC 54: 979–998, 2021) that there exists a homomorphism \(\pi \) from the special orthogonal algebra \(\mathfrak {so}_4\) to T and that each irreducible T-module is an irreducible \(\pi (\mathfrak {so}_4)\)-module. Let W denote an irreducible T-module. In this paper, we consider two Cartan subalgebras \(\mathfrak {h}\) and \(\mathfrak {h}^*\) of \(\mathfrak {so}_4\) and obtain weight space decompositions

$$\begin{aligned} W = \sum _{r=0}^d \sum _{s=0}^p W_{rs} = \sum _{k=0}^d \sum _{l=0}^p W_{kl}^* \end{aligned}$$

where dp are uniquely determined by the parameters of W. We show that each \(W_{rs}\) (resp. \(W_{kl}^*\)) is one-dimensional. Moreover, we describe how \(\langle W_{rs}^*, W_{kl} \rangle \) is connected to Krawtchouk polynomials and we prove the relations

$$\begin{aligned} \pi (\mathfrak {h})W_{rs}^*&\subseteq W_{r-1,s}^*+W_{r,s-1}^*+W_{rs}^*+W_{r+1,s}^*+W_{r,s+1}^*\\ \pi (\mathfrak {h}^*)W_{kl}&\subseteq W_{k-1,l}+W_{k,l-1}+W_{kl}+W_{k+1,l}+W_{k,l+1} \end{aligned}$$

where \(W_{ij}:= 0\) and \(W_{ij}^*:= 0\) if \(i<0\), \(j<0\), \(i>d\), or \(j>p\). Additionally, we establish some connections between T and the tetrahedron algebra \(\boxtimes \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Alnajjar, H., Curtin, B.: A family of tridiagonal pairs. Linear Algebra Appl. 390, 369–384 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Alnajjar, H., Curtin, B.: A family of tridiagonal pairs related to the quantum affine algebra \(U_q(\widehat{\mathfrak{sl} }_2)\). Electron. J. Linear Algebra 13, 1–9 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. The Benjamin/Cummings, Menlo Park, California (1984)

    MATH  Google Scholar 

  5. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)

    MATH  Google Scholar 

  6. Caughman, J.S., MacLean, M., Terwilliger, P.: The Terwilliger algebra of an almost-bipartite \(P\)- and \(Q\)-polynomial association scheme. Discrete Math. 292, 17–44 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Caughman, J.S., Wolff, N.: The Terwilliger algebra of a distance-regular graph that supports a spin model. J. Algebraic Combin. 21, 289–310 (2005)

    MathSciNet  MATH  Google Scholar 

  8. van Dam, E.R., Koolen, J.H., Tanaka, H.: Distance-regular graphs, Electron. J. Combin. (2016), #DS22, 156 pp., arXiv:1410.6294

  9. Eagleson, G.K.: A duality relation for discrete orthogonal systems. J. Studie Sci. Math. Hungar. 3, 127–136 (1968)

    MathSciNet  MATH  Google Scholar 

  10. Elduque, A.: The \(S_4\)-action on the tetrahedron algebra. Proc. Roy. Soc. Edinburgh Sect. A 137, 1227–1248 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Fernández, B., Miklavič, Š: On the Terwilliger algebra of distance-biregular graphs. Linear Algebra Appl. 597, 18–32 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Gao, S., Zhang, L., Hou, B.: The Terwilliger algebras of Johnson graphs. Linear Algebra Appl. 443, 164–183 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Gao, X., Gao, S., Hou, B.: The Terwilliger algebras of Grassmann graphs. Linear Algebra Appl. 471, 427–448 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993)

    MATH  Google Scholar 

  15. Hamid, N., Oura, M.: Terwilliger algebras of some group association schemes. Math. J. Okayama Univ. 61, 199–204 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Hartwig, B.: The tetrahedron algebra and its finite-dimensional irreducible modules. Linear Algebra Appl. 422, 219–235 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Hartwig, B., Terwilliger, P.: The tetrahedron algebra, the Onsager algebra, and the \({\mathfrak{sl_2} }\) loop algebra. J. Algebra 308, 840–863 (2007)

  18. Hora, A., Obata, N.: Quantum Probability and Spectral Analysis of Graphs. Theoretical and Mathematical Physics, Springer, Berlin Heidelberg (2007)

    MATH  Google Scholar 

  19. Humphreys, J.: Introduction to Lie Algebras and Representation Theory. Springer-Verlag, New York (1972)

    MATH  Google Scholar 

  20. Iliev, P., Terwilliger, P.: The Rahman polynomials and the Lie algebra \(\mathfrak{sl} _3(\mathbb{C} )\). Transactions of the American Mathematical Society. 364, 4225–4238 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Ito, T., Terwilliger, P.: Tridiagonal pairs of Krawtchouk type. Linear Algebra Appl. 427, 218–233 (2007). arXiv:0706.1065

    MathSciNet  MATH  Google Scholar 

  22. Ito, T., Terwilliger, P.: The shape of a tridiagonal pair. J. Pure Appl. Algebra 188, 145–160 (2004). arXiv:math.QA/0304244

    MathSciNet  MATH  Google Scholar 

  23. Ito, T., Terwilliger, P.: Tridiagonal pairs and the quantum affine algebra \(U_q(\widehat{\mathfrak{sl}}_2)\). Ramanujan J. 13, 39–62 (2007). arXiv:math.QA/0310042

    MathSciNet  MATH  Google Scholar 

  24. Ito, T., Terwilliger, P.: Two non-nilpotent linear transformations that satisfy the cubic q-Serre relations. J. Algebra Appl. 6, 477–503 (2007). arXiv:math.QA/050839

    MathSciNet  MATH  Google Scholar 

  25. Ito, T., Tanabe, K., Terwilliger, P.: Some algebra related to \(P\)- and \(Q\)-polynomial association schemes. In: Codes and Association Schemes (Piscataway NJ, 1999), Amer. Math. Soc., Providence RI, 167–192 (2001)

  26. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer, Springer Monograph Series (2010)

    MATH  Google Scholar 

  27. Levstein, F., Maldonado, C., Penazzi, D.: The Terwilliger algebra of a Hamming scheme \(H(d, q)\). Eur. J. Combin. 27, 1–10 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Li, S.D., Fan, Y.Z., Ito, T., Karimi, M., Xu, J.: The isomorphism problem of trees from the viewpoint of Terwilliger algebras, J. Combin. Theory Ser. A, 177 (2021)

  29. Liang, X., Ito, T., Watanabe, Y.: The Terwilliger algebra of the Grassmann scheme \(J_q(N, D)\) revisited from the viewpoint of the quantum affine algebra \(U_q(\widehat{\mathfrak{sl} }_2)\). Linear Algebra Appl. 596, 117–144 (2020)

    MathSciNet  MATH  Google Scholar 

  30. MacLean, M.S., Miklavič, Š: On bipartite distance-regular graphs with exactly one non-thin \(T\)-module with endpoint two. Eur. J. Combin. 64, 125–137 (2017)

    MathSciNet  MATH  Google Scholar 

  31. MacLean, M.S., Miklavič, Š: On bipartite distance-regular graphs with exactly two irreducible \(T\)-modules with endpoint two. Lin. Alg. Appl. 515, 275–297 (2017)

    MathSciNet  MATH  Google Scholar 

  32. MacLean, M.S., Miklavič, Š: On a certain class of \(1\)-thin distance-regular graphs. Ars Math. Contemp. 18(2), 187–210 (2020)

    MathSciNet  MATH  Google Scholar 

  33. MacLean, M.S., Miklavič, Š, Penjić, S.: On the Terwilliger algebra of bipartite distance-regular graphs with \(\Delta _2=0\) and \(c_2 =1\). Linear Algebra Appl. 496, 307–330 (2016)

    MathSciNet  MATH  Google Scholar 

  34. MacLean, M.S., Miklavič, Š, Penjić, S.: An \(A\)-invariant subspace for bipartite distance-regular graphs with exactly two irreducible \(T\)-modules with endpoint \(2\), both thin. J. Algebraic Combin. 48, 511–548 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Miklavič, Š.: On bipartite \(Q\)-polynomial distance-regular graphs with diameter \(9\), \(10\), or \(11\), Electron. J. Combin. 25(1) (2018)

  36. Martin, W.J., Tanaka, H.: Commutative association schemes. Eur. J. Combin. 30, 1497–1525 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Morales, J.V.S: Linking the special orthogonal algebra \({\mathfrak{so}}_4\) and the tetrahedron algebra \(\boxtimes \). Linear Algebra Appl. 637, 212–239 (2022)

  38. Morales, J.V.S: On Lee association schemes over \(\mathbb{Z}_4\) and their Terwilliger algebra. Linear Algebra Appl. 510, 311–328 (2016)

  39. Morales, J.V.S., Palma, T.M.: On quantum adjacency algebras of Doob graphs and their irreducible modules. J. Algebr. Comb. 54, 979–998 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Morales, J.V.S., Pascasio, A.: An action of the tetrahedron algebra on the standard module for the Hamming graphs and Doob graphs. Graphs Combin. 30, 1513–1527 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Muzychuk, M., Xu, B.: Terwilliger algebras of wreath products of association schemes. Linear Algebra Appl. 493, 146–163 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Nomura, K.: A refinement of the split decomposition of a tridiagonal pair. Linear Algebra Appl. 403, 1–23 (2005)

    MathSciNet  MATH  Google Scholar 

  43. Nomura, K., Terwilliger, P.: Krawtchouk polynomials, the Lie algebra \(\mathfrak{sl} _2\), and Leonard pairs. Linear Algebra Appl. 437, 345–375 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Nomura, K., Terwilliger, P.: The structure of a tridiagonal pair. Linear Algebra Appl. 429, 1647–1662 (2008). arXiv:0802.1096

    MathSciNet  MATH  Google Scholar 

  45. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65(2), 117–149 (1944)

  46. Penjić, S.: On the Terwilliger algebra of bipartite distance-regular graphs with \(\Delta _2=0\) and \(c_2=2\). Discrete Math. 340, 452–466 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Perk, J.H.H.: Star-triangle relations, quantum Lax pairs, and higher genus curves. In: Proceedings of Symposia in Pure Mathematics, 341–354. Amer. Math. Soc., Providence, RI, (1989)

  48. Tan, Y.Y., Fan, Y.Z., Ito, T., Liang, X.: The Terwilliger algebra of the Johnson scheme \(J(N, D)\) revisited from the viewpoint of group representations. European J. Combin. 80, 157–171 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Tanabe, K.: The irreducible modules of the Terwilliger algebras of Doob schemes. J. Algebr. Combin. 6, 173–195 (1997)

    MathSciNet  MATH  Google Scholar 

  50. Terwilliger, P.: Two relations that generalize the \(q\)-Serre relations and the Dolan–Grady relations, In Physics and Combinatorics 1999 (Nagoya), 377-398, World Scientific Publishing, River Edge, NJ, (2001). arXiv:math.QA/0307016

  51. Terwilliger, P.: The subconstituent algebra of an association scheme I. J. Algebr. Combin. 1, 363–388 (1992)

    MathSciNet  MATH  Google Scholar 

  52. Terwilliger, P.: The subconstituent algebra of an association scheme II. J. Algebr. Combin. 2, 73–103 (1993)

    MathSciNet  MATH  Google Scholar 

  53. Terwilliger, P.: The subconstituent algebra of an association scheme III. J. Algebr. Combin. 2, 177–210 (1993)

    MathSciNet  MATH  Google Scholar 

  54. Terwilliger, P.: An algebraic approach to the Askey scheme of orthogonal polynomials in: Orthogonal Polynomials and Special Functions, 255–330, Lecture Notes in Math., 1883, Springer, Berlin (2006). arXiv:math.QA/0408390

  55. Terwilliger, P., Žitnik, A.: The quantum adjacency algebra and subconstituent algebra of a graph. J. Combin. Theory Ser. A 166, 297–314 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Tomiyama, M.: The Terwilliger algebra of the incidence graph of the Hamming graph. J. Algebraic Combin. 48, 77–118 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude to the anonymous reviewers for the constructive comments that ultimately led to the improvement of the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Vincent S. Morales.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, J.V.S. On standard bases of irreducible modules of Terwilliger algebras of Doob schemes. J Algebr Comb 58, 913–931 (2023). https://doi.org/10.1007/s10801-023-01227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-023-01227-5

Keywords

Mathematics Subject Classification

Navigation