Skip to main content
Log in

On Cayley representations of central Cayley graphs over almost simple groups

Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

A Cayley graph over a group G is said to be central if its connection set is a normal subset of G. We prove that every central Cayley graph over a simple group G has at most two pairwise nonequivalent Cayley representations over G associated with the subgroups of \({{\,\mathrm{Sym}\,}}(G)\) induced by left and right multiplications of G. We also provide an algorithm which, given a central Cayley graph \(\Gamma \) over an almost simple group G whose socle is of a bounded index, finds the full set of pairwise nonequivalent Cayley representations of \(\Gamma \) over G in time polynomial in size of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed.

References

  1. Babai, L.: Isomorphism problem for a class of point symmetric structures. Acta Math. Acad. Sci. Hungar. 29(3), 329–336 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babai, L., Kantor, W.M., Lubotsky, A.: Small-diameter Cayley graphs for finite simple groups. Eur. J. Comb. 10(6), 507–522 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burnside, W.: Theory of Groups of Finite Order, 2nd edn. Cambridge University Press, London (1911)

    MATH  Google Scholar 

  4. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  5. Dalla Volta, F., Lucchini, A.: Generation of almost simple groups. J. Algebra 178(1), 194–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Evdokimov, S., Ponomarenko, I.: Circulant grpahs: recognizing and isomorphism testing in polynomial time. St. Petersburg Math. J. 15(6), 813–835 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Evdokimov, S., Muzychuk, M., Ponomarenko, I.: A family of permutation groups with exponentially many non-conjugated regular elementary abelian subgroups. St. Petersburg Math. J. 29(4), 575–580 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang, X.G., Praeger, C.E., Wang, J.: On the automorphism groups of Cayley graphs of finite simple groups. J. Lond. Math. Soc. (2) 66(3), 563–578 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fried, M.D., Guralnick, R., Saxl, J.: Schur covers and Carlitz’s conjecture. Israel J. Math. 82, 157–225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ganesan, A.: Automorphism group of the complete transposition graph. J. Algebra Comb. 42(3), 793–801 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kohl, S.: A bound on the order of the outer automorphism group of a finite simple group of given order, preprint (2003), 2 https://stefan-kohl.github.io/preprints/outbound.pdf

  12. Li, C.H.: On isomorphisms of finite Cayley graphs—a survey. Discrete Math. 256(1–2), 301–334 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, C.H.: Finite edge-transitive Cayley graphs and rotary Cayley maps. Trans. Amer. Math. Soc. 358(10), 4605–4635 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liebeck, M.W., Praeger, Ch.E., Saxl, J.: Regular subgroups of primitive permutation groups. Mem. Amer. Math. Soc. 203(952), 1–88 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Lubotzky, A.: Expander graphs in pure and applied mathematics. Bull. Amer. Math. Soc. (N.S.) 49(1), 113–162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luks, E.M., Miyazaki, T.: Polynomial-time normalizers. Discrete Math. Theor. Comput. Sci. 13(4), 61–96 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Muzychuk, M.: On the isomorphism problem for cyclic combinatorial objects. Discrete Math. 197(198), 589–606 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nedela, R., Ponomarenko, I.: Recognizing and testing isomorphism of Cayley graphs over an abelian group of order \(4p\) in polynomial time. In: Jones, G., et al. (eds.) Isomorphisms, Symmetry and Computations in Algebraic Graph Theory, pp. 195–218. Springer, Berlin (2020)

    Chapter  MATH  Google Scholar 

  19. Ponomarenko, I., Vasil’ev, A.: Testing isomorphism of central Cayley graphs over almost simple groups in polynomial time. J. Math. Sci. 234(2), 219–236 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ryabov, G.: On Cayley representations of finite graphs over abelian \(p\)-groups. St. Petersburg Math. J. 32(1), 71–89 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Seress, A.: Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  22. Wang, J., Xu, M.-Y.: A class of hamiltonian Cayley graphs and Parsons graphs. Eur. J. Comb. 18, 597–600 (1997)

    Article  MATH  Google Scholar 

  23. Wielandt, H.: Finite Permutation Groups. Academic Press, New York (1964)

    MATH  Google Scholar 

  24. Zgrablic, B.: On quasiabelian Cayley graphs and graphical doubly regular representations. Discrete Math. 244, 495–519 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Ilia Ponomarenko for fruitful discussions and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Vasil’ev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. Guo was supported by the National Natural Science Foundation of China (No. 11961017), W. Guo and A. V. Vasil’ev were supported by the National Natural Science Foundation of China (No. 12171126), and G. Ryabov was supported by the Mathematical Center in Akademgorodok under agreement No. 075-15-2022-281 with the Ministry of Science and Higher Education of the Russian Federation.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Guo, W., Ryabov, G. et al. On Cayley representations of central Cayley graphs over almost simple groups. J Algebr Comb 57, 227–237 (2023). https://doi.org/10.1007/s10801-022-01166-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-022-01166-7

Keywords

Mathematics Subject Classification

Navigation