Skip to main content
Log in

On robustness and related properties on toric ideals

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

A toric ideal is called robust if its universal Gröbner basis is a minimal set of generators, and is called generalized robust if its universal Gröbner basis equals its universal Markov basis (the union of all its minimal sets of binomial generators). Robust and generalized robust toric ideals are both interesting from both a commutative algebra and an algebraic statistics perspective. However, only a few nontrivial examples of such ideals are known. In this work, we study these properties for toric ideals of both graphs and numerical semigroups. For toric ideals of graphs, we characterize combinatorially the graphs giving rise to robust and to generalized robust toric ideals generated by quadratic binomials. As a by-product, we obtain families of Koszul rings. For toric ideals of numerical semigroups, we determine that one of its initial ideals is a complete intersection if and only if the semigroup belongs to the so-called family of free numerical semigroups. Hence, we characterize all complete intersection numerical semigroups which are minimally generated by one of its Gröbner basis and, as a consequence, all the Betti numbers of the toric ideal and its corresponding initial ideal coincide. Moreover, also for numerical semigroups, we prove that the ideal is generalized robust if and only if the semigroup has a unique Betti element and that there are only trivial examples of robust ideals. We finish the paper with some open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Abbott, J., Bigatti, A.M., Robbiano, L.: CoCoA: A System for Doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it

  2. Alcántar, A., Villarreal, R.H.: Critical binomials of monomial curves. Comm. Algebra 22, 3037–3052 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aoki, S., Takemura, A., Yoshida, R.: Indispensable monomials of toric ideals and Markov bases. J. Symbolic Comput. 43, 490–507 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ardila, F., Boocher, A.: The closure of a linear space in a product of lines. J. Algebraic Combin. 43, 199–235 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Assi, A., García-Sánchez, P.A.: Constructing the set of complete intersection numerical semigroups with a given Frobenius number. Appl. Algebra Engrg. Comm. Comput. 24, 133–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Assi, A., García-Sánchez, P.A.: Numerical Semigroups and Applications. RSME Springer Series, Springer International Publishing Switzerland (2016)

  7. Bermejo, I., García-Marco, I.: Complete intersections in simplicial toric varieties. J. Symbolic Comput. 68, 265–286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bermejo, I., García-Marco, I., Salazar-González, J.J.: An algorithm for checking whether the toric ideal of an affine monomial curve is a complete intersection. J. Symbolic Comput. 42(10), 971–991 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bermejo, I., Gimenez, P., Reyes, E., Villarreal, R.: Complete intersections in affine monomial curves. Bol. Soc. Mat. Mex. (3) 11(2), 191–203 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Bogart, T., Jensen, A.N., Thomas, R.R.: The circuit ideal of a vector configuration. J. Algebra 309, 518–542 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boocher, A., Robeva, E.: Robust toric ideals. J. Symbolic Comput. 68(1), 254–264 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boocher, A., Brown, B.C., Duff, T., Lyman, L., Murayama, T., Nesky, A., Schaefer, K.: Robust graph ideals. Ann. Comb. 19(4), 641–660 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bondy, J.A., Murty, U.S.R.: Graph Theory (Graduate Texts in Mathematics, 244). Springer, New York (2008)

    Google Scholar 

  14. Charalambous, H., Thoma, A., Vladoiu, M.: Markov bases and generalized Lawrence liftings. Ann. Comb. 19(4), 661–669 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Charalambous, H., Thoma, A., Vladoiu, M.: Minimal generating sets of lattice ideals. Collect. Math. 68, 377–400 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Conca, A., Hosten, S., Thomas, R.R.: Nice initial complexes of some classical ideals. Algebr. Geom. Comb. 423, 11–42 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Delorme, C.: Sous-monoïdes d’intersection complète de N. Ann. Sci. Èc. Norm. Supèr. 9, 145–154 (1976)

    Article  MATH  Google Scholar 

  18. D’Anna, M., Micale, V., Sammartano, A.: Classes of complete intersection numerical semigroups. Semigroup Forum 88(2), 453–467 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-2-1 — A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2021)

  20. Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann. Statist. 26(1), 363–397 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84, 1–45 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eliahou, S.: Courbes monomiales et algèbre de Rees symbolique, PhD Thesis, Université de Genève, (1983)

  23. García-Sánchez, P.A., Herrera-Poyatos, A.: Isolated factorizations and their applications in simplicial affine semigroups. J. Algebra Appl. 19(05), 2050082 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. García-Sánchez, P.A., Ojeda, I., Rosales, J.C.: Affine semigroups having a unique Betti element. J. Algebra Appl. 12(3), 125–177 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Gimenez, P., Sengupta, I., Srinivasan, I.: Minimal graded free resolutions for monomial curves defined by arithmetic sequences. J. Algebra 338, 294–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gitler, I., Reyes, E., Villareal, R.: Ring graphs and complete intersection toric ideals. Discrete Math. 310, 430–441 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Herzog, J.: Generators and relations of abelian semigroups and semigroup rings. Manuscr. Math. 3, 175–193 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hochster, M.: Rings of invariants of tori, Cohen-Macaulay rings generated by monomials and polytopes. Ann. Math. 96, 318–337 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  29. Katsabekis, A., Ojeda, I.: An indispensable classification of monomial curves in \({\mathbb{A} }^4(k)\), Pacific. J. Math. 268(1), 96–116 (2014)

    MATH  Google Scholar 

  30. Martínez-Bernal, J., Villarreal, R.H.: Toric ideals generated by circuits. Algebra Colloq. 19(4), 665–672 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra (Graduate Texts in Mathematics), vol. 227. Springer Verlag, New York (2005)

  32. Morales, M.: Noetherian symbolic blow-ups. J. Algebra 140, 12–25 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ohsugi, H., Hibi, T.: Toric ideals generated by quadratic binomials. J. Algebra 218(2), 509–527 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Petrovic, S., Thoma, A., Vladoiu, M.: Bouquet algebra of toric ideals. J. Algebra 512, 493–525 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Petrovic, S., Thoma, A., Vladoiu, M.: Hypergraph encodings of arbitrary toric ideals. J. Combin. Theory Ser. A 166, 11–41 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ramírez Alfonsín, J.L.: The Diophantine Frobenius Problem, Volume 30 of Oxford Lecture Series in Mathematics and Its Appplications. OUP Oxford, Oxford (2005)

  37. Rosales, J.C., García-Sânchez, P.A.: On free affine semigroups. Semigroup Forum 58, 367–385 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Reyes, E., Tatakis, Ch., Thoma, A.: Minimal generators of toric ideals of graphs. Adv. Appl. Math. 48(1), 64–78 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, No. 8 American Mathematical Society Providence, R.I. (1995)

  40. Sullivant, S.: Strongly robust toric ideals in codimension 2. J. Alg. Stat. 10(1), 128–136 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tatakis, Ch., Generalized robust toric ideals. J. Pure Appl. Algebra 220, 263–277 (2016)

  42. Tatakis, Ch., Thoma, A.: On the universal Gröbner bases of toric ideals of graphs. J. Combin. Theory Ser. A 118, 1540–1548 (2011)

  43. Tatakis, Ch., Thoma, A.: On complete intersection toric ideals of graphs. J. Algebraic Combin. 38(2), 351–370 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tatakis, Ch., Thoma, A.: The structure of complete intersection graphs and their planarity, preprint

  45. Villarreal, R.H.: Rees algebras of edge ideals. Comm. Algebra 23, 3513–3524 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. Villarreal, R.H.: On the equations of the edge cone of a graph and some applications. Manuscripta Math. 97, 309–317 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Villarreal, R.H.: Monomial Algebras, Monographs and Research Notes in Mathematics, 2nd edn. CRC Press, Boca Raton (2015)

    Google Scholar 

Download references

Acknowledgements

This paper was written during the visit of the second author at the Department of Mathematics in Universidad de La Laguna (ULL). This work was partially supported by the Spanish MICINN ALCOIN (PID2019-104844GB-I00) and by the ULL funded research projects MASCA and MACACO.Computational experiments with the computer softwares CoCoA [1] and Singular [19] have helped in the elaboration of this work. We also would like to thank the anonymous referees for their positive comments and careful reviews, which helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Tatakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Marco, I., Tatakis, C. On robustness and related properties on toric ideals. J Algebr Comb 57, 21–52 (2023). https://doi.org/10.1007/s10801-022-01162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-022-01162-x

Keywords

Mathematics Subject Classification

Navigation