Skip to main content

Principal subspaces for the affine Lie algebras in types D, E and F


We consider the principal subspaces of certain level \(k\geqslant 1\) integrable highest weight modules and generalized Verma modules for the untwisted affine Lie algebras in types D, E and F. Generalizing the approach of G. Georgiev we construct their quasi-particle bases. We use the bases to derive presentations of the principal subspaces, calculate their character formulae and find some new combinatorial identities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. In contrast with [21] and [23, Table Fin], we reverse the labels in the Dynkin diagram of type \(C_l\) in Fig. 1, so that the root lengths in the sequence \(\alpha _1,\ldots ,\alpha _l\) decrease for all types of \(\mathfrak {g}\), thus getting a simpler formulation of Theorem 3.1.

  2. Note that the quasi-particles of color 1 in type \(E_7\) correspond, with respect to the aforementioned identification, to the quasi-particles of color 7 in type \(E_8\); see Fig. 1.


  1. Andrews, G. E.: Partitions and Durfee dissection, Amer. J. Math. 101, no. 3, 735–742 (1979)

  2. Ardonne, E., Kedem, R., Stone, M.: Fermionic Characters and Arbitrary Highest-Weight Integrable \(\widehat{\mathfrak{sl}}_{r+1}\)-Modules. Comm. Math. Phys. 264, 427–464 (2006)

    Article  MathSciNet  Google Scholar 

  3. Baranović, I., Primc, M., Trupčević, G.: Bases of Feigin-Stoyanovsky’s type subspaces for \(C_l^{(1)}\). Ramanujan J. 45, 265–289 (2018)

    Article  MathSciNet  Google Scholar 

  4. Butorac, M.: Combinatorial bases of principal subspaces for the affine Lie algebra of type \(B_2^{(1)}\). J. Pure Appl. Algebra 218, 424–447 (2014)

    Article  MathSciNet  Google Scholar 

  5. Butorac, M.: Quasi-particle bases of principal subspaces for the affine Lie algebras of types \(B^{(1)}_l\) and \(C^{(1)}_l\). Glas. Mat. Ser. III(51), 59–108 (2016)

    Article  MathSciNet  Google Scholar 

  6. Butorac, M.: Quasi-particle bases of principal subspaces for the affine Lie algebra of type \(G_{2}^{(1)}\). Glas. Mat. Ser. III(52), 79–98 (2017)

    Article  MathSciNet  Google Scholar 

  7. Butorac, M., Sadowski, C.: Combinatorial bases of principal subspaces of modules for twisted affine Lie algebras of type \(A_{2l-1}^{(2)}\), \(D_l^{(2)}\), \(E_6^{(2)}\) and \(D_4^{(3)}\). New York J. Math. 25, 71–106 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Cai, W., Jing, N.: On vertex operator realizations of Jack functions. J. Algebraic Combin. 32, 579–595 (2010)

    Article  MathSciNet  Google Scholar 

  9. Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \(A_{1}^{(1)}\)-modules, I: level one case. Internat. J. Math. 19, 71–92 (2008)

    Article  MathSciNet  Google Scholar 

  10. Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of certain \(A_1^{(1)}\)-modules, II: higher level case. J. Pure Appl. Algebra 212, 1928–1950 (2008)

    Article  MathSciNet  Google Scholar 

  11. Calinescu, C., Lepowsky, J., Milas, A.: Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E. J. Algebra 323, 167–192 (2010)

    Article  MathSciNet  Google Scholar 

  12. Calinescu, C., Penn, M., Sadowski, C.: Presentations of Principal Subspaces of Higher Level Standard \(A_2^{(2)}\)-Modules, Algebr. Represent. Theory 22, 1457–1478 (2019)

    Article  Google Scholar 

  13. Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Ramanujan recursion and intertwining operators. Commun. Contemp. Math. 5, 947–966 (2003)

    Article  MathSciNet  Google Scholar 

  14. Capparelli, S., Lepowsky, J., Milas, A.: The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators. Ramanujan J. 12, 379–397 (2006)

    Article  MathSciNet  Google Scholar 

  15. Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators, Progress in Math. 112, Birkhäuser, Boston, (1993)

  16. Stoyanovsky, A. V., Feigin, B. L.: Functional models of the representations of current algebras and semi-infinite Schubert cells, Funktsional Anal. i Prilozhen. 28 (1) (1994), 68–90, 96 (in Russian); translation in Funct. Anal. Appl. 28 (1) (1994), 55–72; preprint B. L. Feigin, A. V. Stoyanovsky, Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, arXiv:hep-th/9308079

  17. Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc. 104, No. 494 (1993), 64 pages

  18. Frenkel, I., Kac, V.: Basic representations of affine Lie algebras and dual resonance models. Invent. Math. 62, 23–66 (1980)

    Article  MathSciNet  Google Scholar 

  19. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. Academic Press, Boston, Pure and Appl. Math. (1988)

    MATH  Google Scholar 

  20. G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace, J. Pure Appl. Algebra 112 (1996), 247–286

  21. Humphreys, J.: Introduction to Lie Algebras and Their Representations, Graduated Texts in Mathematics, Springer-Verlag, New York, (1972)

  22. Jerković, M., Primc, M.: Quasi-particle fermionic formulas for \((k,3)\)-admissible configurations. Cent. Eur. J. Math. 10, 703–721 (2012)

    Article  MathSciNet  Google Scholar 

  23. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  24. Kanade, S.: On a Koszul complex related to the principal subspace of the basic vacuum module for \(A_1^{(1)}\). J. Pure Appl. Algebra 222, 323–339 (2018)

    Article  MathSciNet  Google Scholar 

  25. Kawasetsu, K.: The Free Generalized Vertex Algebras and Generalized Principal Subspaces. J. Algebra 444, 20–51 (2015)

    Article  MathSciNet  Google Scholar 

  26. Kožić, S.: Principal subspaces for quantum affine algebra \(U_{q}(A_{n}^{(1)})\). J. Pure Appl. Algebra 218, 2119–2148 (2014)

    Article  MathSciNet  Google Scholar 

  27. Kožić, S.: Higher level vertex operators for\({\cal{U}}_q(\widehat{sl}_2)\), Selecta Math. (N.S.) 23, 2397–2436 (2017)

  28. Kožić, S.: Commutative operators for double Yangian \(DY(\mathfrak{sl}_n)\). Glas. Mat. Ser. III 53(1), 97–113 (2018)

    Article  MathSciNet  Google Scholar 

  29. Lepowsky, J., Li, H.-S.: Introduction to Vertex Operator Algebras and Their Representations, Progress in Math, vol. 227. Birkhäuser, Boston (2003)

    Google Scholar 

  30. Lepowsky, J., Milne, S.: Lie algebraic approaches to classical partition identities. Adv. Math. 29, 15–59 (1978)

    Article  MathSciNet  Google Scholar 

  31. Lepowsky, J., Primc, M.: Structure of the standard modules for the affine Lie algebra\(A_{1}^{(1)}\), Contemp. Math. 46, Amer. Math. Soc., Providence, (1985)

  32. Lepowsky, J., Wilson, R.L., The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77,: 199–290; II, The case \(A_1\), principal gradation. Invent. Math. 79(1985), 417–442 (1984)

  33. Meurman, A., Primc, M.: Annihilating ideals of standard modules of \(\mathfrak{sl}(2,\mathbb{C})\tilde{ }\) and combinatorial identities. Adv. Math. 64, 177–240 (1987)

    Article  MathSciNet  Google Scholar 

  34. Milas, A., Penn, M.: Lattice vertex algebras and combinatorial bases: general case and W-algebras. New York J. Math. 18, 621–650 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Misra, K.C.: Structure of Certain Standard Modules for \(A_n^{(1)}\) and the Rogers-Ramanujan Identities. J. Algebra 88, 196–227 (1984)

    Article  MathSciNet  Google Scholar 

  36. Penn, M., Sadowski, C.: Vertex-algebraic structure of basic \(D_4^{(3)}\) modules. Ramanujan J. 43, 571–617 (2017)

    Article  MathSciNet  Google Scholar 

  37. Penn, M., Sadowski, C.: Vertex-algebraic structure of principal subspaces of the basic modules for twisted Affine Kac-Moody Lie algebras of type \(A_{2n-1}^{(2)}\), \(D_n^{(2)}\), \(E_6^{(2)}\). J. Algebra 496, 242–291 (2018)

    Article  MathSciNet  Google Scholar 

  38. Primc, M.: Vertex operator construction of standard modules for \(A_n^{(1)}\). Pacific J. Math. 162, 143–187 (1994)

    Article  MathSciNet  Google Scholar 

  39. Sadowski, C.: Presentations of the principal subspaces of the higher-level standard \(\widehat{\mathfrak{sl}(3)}\)-modules. J. Pure Appl. Algebra 219, 2300–2345 (2015)

    Article  MathSciNet  Google Scholar 

  40. Sadowski, C.: Principal subspaces of higher-level standard \(\widehat{\mathfrak{sl}(n)}\)-modules. Internat. J. Math. 26, 1550063 (2015)

    Article  MathSciNet  Google Scholar 

  41. Segal, G.: Unitary representations of some infinite-dimensional groups. Comm. Math. Phys. 80, 301–342 (1981)

    Article  MathSciNet  Google Scholar 

Download references


The authors would like to thank Mirko Primc for useful discussions and support. Also, we would like to thank the anonymous referees for the valuable comments and suggestions which helped us to improve the manuscript. This work has been supported by Croatian Science Foundation under the project UIP-2019-04-8488. The first author is partially supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Slaven Kožić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Butorac, M., Kožić, S. Principal subspaces for the affine Lie algebras in types D, E and F. J Algebr Comb 56, 1063–1096 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Principal subspaces
  • Combinatorial bases
  • Combinatorial identities
  • Quasi-particles
  • Vertex operator algebras
  • Affine Lie algebras

Mathematics Subject Classification

  • Primary 17B67
  • Secondary 05A19
  • 17B69