Skip to main content
Log in

On maximal cliques of Cayley graphs over fields

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

We describe a new class of maximal cliques, with a vector space structure, of Cayley graphs defined on the additive group of a field. In particular, we show that in the cubic Paley graph with order \(q^3\), the subfield with q elements forms a maximal clique. Similar statements also hold for quadruple Paley graphs and Peisert graphs with quartic order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ananchuen, W.: On the adjacency properties of generalized Paley graphs. Australas. J. Combin. 6, 129–147 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Baker, R.D., Ebert, G.L., Hemmeter, J., Woldar, A.: Maximal cliques in the Paley graph of square order. Special issue on orthogonal arrays and affine designs. Part I. J. Statist. Plann. Inference 56(1), 33–38 (1996)

    Article  MathSciNet  Google Scholar 

  3. Blokhuis, A.: On subsets of \(GF(q^2)\) with square differences. Nederl. Akad. Wetensch. Indag. Math. 46(4), 369–372 (1984)

    Article  MathSciNet  Google Scholar 

  4. Broere, I., Döman, D., Ridley, J.N.: The clique numbers and chromatic numbers of certain Paley graphs. Quaestiones Math. 11, 91–93 (1988)

    Article  MathSciNet  Google Scholar 

  5. Cohen, S.: Clique numbers of Paley graphs. Quaestiones Math. 11, 225–231 (1988)

    Article  MathSciNet  Google Scholar 

  6. Di Benedetto, D., Solymosi, J., White, E.P.: On the directions determined by a Cartesian product in an affine Galois plane. Combinatorica 41(6), 755–763 (2021)

  7. Green, B.: Counting sets with small sumset, and the clique number of random Cayley graphs. Combinatorica 25(3), 307–326 (2005)

    Article  MathSciNet  Google Scholar 

  8. Godsil, C., Rooney, B.: Hardness of computing clique number and chromatic number for Cayley graphs. Europ. J. Combin. 62, 147–166 (2017)

    Article  MathSciNet  Google Scholar 

  9. Goryainov, S., Kabanov, V.V., Shalaginov, L., Valyuzhenich, A.: On eigenfunctions and maximal cliques of Paley graphs of square order. Finite Fields Appl. 52, 361–369 (2018)

    Article  MathSciNet  Google Scholar 

  10. Hanson, B., Petridis, G.: Refined estimates concerning sumsets contained in the roots of unity. Proc. Lond. Math. Soc. (3) 122(3), 353–358 (2021)

    Article  MathSciNet  Google Scholar 

  11. Jones, G.: Paley and the Paley graphs. In: Isomorphisms, Symmetry and Computations in Algebraic Graph Theory, Springer Proceedings in Mathematics & Statistics, vol. 305, pp. 155–183. Springer, Cham (2016)

  12. Karp, R.: Reducibility among combinatorial problems. In: Complexity of Computer Computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pp. 85–103. Plenum, New York (1972)

  13. Key, J.D., Rodrigues, B.G.: Special LCD codes from Peisert and generalized Peisert graphs. Graphs Combin. 35(3), 633–652 (2019)

    Article  MathSciNet  Google Scholar 

  14. Kisielewicz, A., Peisert, W.: Pseudo-random properties of self-complementary symmetric graphs. J. Graph Theory 47(4), 310–316 (2004)

    Article  MathSciNet  Google Scholar 

  15. Lim, T.K., Praeger, C.E.: On generalized Paley graphs and their automorphism groups. Michigan Math. J. 58(1), 293–308 (2009)

    MathSciNet  Google Scholar 

  16. Limbupasiriporn, J.: Codes from neighbourhood designs of the graphs \(GP(q,\frac{q-1}{2})\) with \(q\) odd. Graphs Combin. 33(3), 537–548 (2017)

    Article  MathSciNet  Google Scholar 

  17. Mullin, N.: Self-complementary arc-transitive graphs and their imposters. Master’s thesis, University of Waterloo (2009)

  18. Peisert, W.: All self-complementary symmetric graphs. J. Algebra 240(1), 209–229 (2001)

    Article  MathSciNet  Google Scholar 

  19. Sziklai, P.: On subsets of \(GF(q^2)\) with \(d\)th power differences. Discrete Math. 208(209), 547–555 (1999)

    Article  MathSciNet  Google Scholar 

  20. The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.0)

  21. Yip, C.H.: On the clique number of Paley graphs of prime power order. Finite Fields Appl. 77, 101930 (2022)

  22. Yip, C.H.: On the directions determined by Cartesian products and the clique number of generalized Paley graphs. Integers 21, Paper No. A51 (2021)

  23. Yip, C.H.: On the clique number of Paley graphs and generalized Paley graphs. M.Sc. thesis, University of British Columbia (2021)

Download references

Acknowledgements

The author would like to thank Joshua Zahl for his valuable suggestions, and Greg Martin, József Solymosi, and Ethan White for helpful discussions. The author also would like to thank the anonymous referees for a careful reading of the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Hoi Yip.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Sage code

Appendix: Sage code

Sage code for finding the clique number of a Peisert graph (for example, of order 81):

figure a

Sage code for checking whether \(\mathbb {F}_q\) is a maximal clique in the Peisert graph with order \(q^4\), where q is a power of a prime \(p \equiv 3 \pmod 4\) (for example, \(q=23\)):

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yip, C.H. On maximal cliques of Cayley graphs over fields. J Algebr Comb 56, 323–333 (2022). https://doi.org/10.1007/s10801-021-01113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-021-01113-y

Keywords

Mathematics Subject Classification

Navigation