Glorious pairs of roots and Abelian ideals of a Borel subalgebra


Let \({{\mathfrak {g}}}\) be a simple Lie algebra with a Borel subalgebra \({{\mathfrak {b}}}\). Let \(\Delta ^+\) be the corresponding (po)set of positive roots and \(\theta \) the highest root. A pair \(\{\eta ,\eta '\}\subset \Delta ^+\) is said to be glorious, if \(\eta ,\eta '\) are incomparable and \(\eta +\eta '=\theta \). Using the theory of abelian ideals of \({{\mathfrak {b}}}\), we (1) establish a relationship of \(\eta ,\eta '\) to certain abelian ideals associated with long simple roots, (2) provide a natural bijection between the glorious pairs and the pairs of adjacent long simple roots (i.e., some edges of the Dynkin diagram), and (3) point out a simple transform connecting two glorious pairs corresponding to the incident edges in the Dynkin diagram. In types \({{\mathbf {\mathsf{{{DE}}}}}}_{}\), we prove that if \(\{\eta ,\eta '\}\) corresponds to the edge through the branching node of the Dynkin diagram, then the meet \(\eta \wedge \eta '\) is the unique maximal non-commutative root. There is also an analogue of this property for all other types except type \({{\mathbf {\mathsf{{{A}}}}}}_{}\). As an application, we describe the minimal non-abelian ideals of \({{\mathfrak {b}}}\).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5 et 6. Hermann, Paris (1975)

    MATH  Google Scholar 

  2. 2.

    Cellini, P., Papi, P.: ad-nilpotent ideals of a Borel subalgebra. J. Algebra 225, 130–141 (2000)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Cellini, P., Papi, P.: Abelian ideals of Borel subalgebras and affine Weyl groups. Adv. Math. 187, 320–361 (2004)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cellini, P., Möseneder Frajria, P., Papi, P.: Symmetries of the poset of abelian ideals in a Borel subalgebra. J. Lie Theory 24(1), 199–224 (2014)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B.: Lie Groups and Lie Algebras III (Encylopaedia of Mathematical Sciences, vol. 41). Springer, New York (1994)

    Google Scholar 

  6. 6.

    Kostant, B.: The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations. Int. Math. Res. Not. 5, 225–252 (1998)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Kostant, B.: Powers of the Euler product and commutative subalgebras of a complex simple Lie algebra. Invent. Math. 158(1), 181–226 (2004)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Kostant, B., Wallach, N.: On a theorem of Ranee Brylinski, In: Symmetry in Mathematics and Physics, Contemporary Mathematics, vol. 490, pp. 105–132. American Mathematical Society, Providence (2009)

  9. 9.

    Panyushev, D.: Abelian ideals of a Borel subalgebra and long positive roots. Int. Math. Res. Not. 35, 1889–1913 (2003)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Panyushev, D.: The poset of positive roots and its relatives. J. Algebraic Combin. 23, 79–101 (2006)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Panyushev, D.: Abelian ideals of a Borel subalgebra and root systems. J. Eur. Math. Soc. 16(12), 2693–2708 (2014)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Panyushev, D.: Antichains in weight posets associated with gradings of simple Lie algebras. Math. Z. 281(3–4), 1191–1214 (2015)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Panyushev, D.: Normalisers of abelian ideals of Borel subalgebras and \({\mathbb{Z}}\)-gradings of a simple Lie algebra. J. Lie Theory 26, 659–672 (2016)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Panyushev, D.I.: Abelian ideals of a borel subalgebra and root systems. II. Algebr. Represent. Theor. (2019).

    Article  MATH  Google Scholar 

  15. 15.

    Suter, R.: Abelian ideals in a Borel subalgebra of a complex simple Lie algebra. Invent. Math. 156, 175–221 (2004)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dmitri I. Panyushev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is partially supported by the R.F.B.R. Grant No. 16-01-00818.

Appendix A. Data for the exceptional Lie algebras

Appendix A. Data for the exceptional Lie algebras

A.1 For \({{\mathbf {\mathsf{{{E}}}}}}_{6}\), \({{\mathbf {\mathsf{{{E}}}}}}_{7}\), and \({{\mathbf {\mathsf{{{E}}}}}}_{8}\), the numbering of the simple roots is

For \({{\mathbf {\mathsf{{{E}}}}}}_{6}\), \({{\mathbf {\mathsf{{{E}}}}}}_{7}\), and \({{\mathbf {\mathsf{{{E}}}}}}_{8}\), the numbering of the simple roots is



The glorious pairs \((\eta ,\eta ')\) associated with adjacent simple roots \((\alpha ,\alpha ')\) are given below. Recall that here \(\eta \in \min (I(\alpha )_{\textsf {min}})\) and \({\mathsf {cl}}(\eta )=\alpha '\).

A.2 For \({{\mathbf {\mathsf{{{D}}}}}}_{n}\) and \({{\mathbf {\mathsf{{{E}}}}}}_{n}\), the explicit correspondence between tails and odd roots is presented below. The numbering of tails follows Fig. 1. That is, according to the chosen numbering of \(\Pi \), see Example 3.8 and figures in Sect. 1, \({{\mathcal {T}}}_1\) contains \(\alpha _1\), \({{\mathcal {T}}}_2\) contains \(\alpha _{n-1}\), and \({{\mathcal {T}}}_3\) contains \(\alpha _n\). In particular, we always have \(\#{{\mathcal {T}}}_3=1\). Then the odd root \(\beta _i\) corresponding to \({{\mathcal {T}}}_i\) is:

A.3 Here we provide the transition roots for the pairs of incident edges in types \({{\mathbf {\mathsf{{{E}}}}}}_{6}\), \({{\mathbf {\mathsf{{{E}}}}}}_{7}\), and \({{\mathbf {\mathsf{{{E}}}}}}_{8}\), and thereby explicitly present the bijection of Remark 3.13.


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panyushev, D.I. Glorious pairs of roots and Abelian ideals of a Borel subalgebra. J Algebr Comb 52, 505–525 (2020).

Download citation


  • Root system
  • Borel subalgebra
  • Abelian ideal
  • Adjacent simple roots

Mathematics Subject Classification

  • 17B20
  • 17B22
  • 06A07
  • 20F55