Abstract
We establish an isomorphism between the center of the twisted Heisenberg category and the subalgebra \(\Gamma \) of the symmetric functions generated by odd power sums. We give a graphical description of the factorial Schur Q-functions and inhomogeneous power sums as closed diagrams in the twisted Heisenberg category and show that the bubble generators of the center correspond to two sets of generators of \(\Gamma \) which encode data related to up/down transition functions on the Schur graph. Finally, we describe an action of the trace of the twisted Heisenberg category, the W-algebra \(W^-\subset W_{1+\infty }\), on \(\Gamma \).
This is a preview of subscription content, log in to check access.
References
- 1.
Beliakova, A., Guliyev, Z., Habiro, K., Lauda, A.D.: Trace as an alternative decategorification functor. Acta Math. Vietnam 39(4), 425–480 (2014)
- 2.
Biane, P.: Representations of symmetric groups and free probability. Adv. Math. 138(1), 126–181 (1998)
- 3.
Borodin, A., Olshanski, G.: Infinite-dimensional diffusions as limits of random walks on partitions. Probab. Theory Related Fields 144(1–2), 281–318 (2009)
- 4.
Borodin, A.M.: Multiplicative central measures on the Schur graph, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 240 (Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 2), 44–52, 290–291 (1997)
- 5.
Cautis, S., Lauda, A.D., Licata, A.M., Sussan, J.: W-algebras from Heisenberg categories. J. Inst. Math. Jussieu 17(5), 981–1017 (2018)
- 6.
Cautis, S., Sussan, J.: On a categorical Boson–Fermion correspondence. Comm. Math. Phys. 336(2), 649–669 (2015)
- 7.
Hill, D., Kujawa, J.R., Sussan, J.: Degenerate affine Hecke–Clifford algebras and type \(Q\) Lie superalgebras. Math. Z. 268(3–4), 1091–1158 (2011)
- 8.
Ivanov, V.N.: The Gaussian limit for projective characters of large symmetric groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 283 no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 6, 73-97, 259 (2001)
- 9.
Ivanov, V.N.: Interpolation analogues of Schur \(Q\)-functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 307 no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 10, 99–119, 281–282 (2004)
- 10.
Ivanov, V.N., Kerov, S.: The algebra of conjugacy classes in symmetric groups, and partial permutations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 256 no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 3, 95–120, 265 (1999)
- 11.
Kac, V.G., Wang, W., Yan, C.H.: Quasifinite representations of classical Lie subalgebras of \(\cal{W}_{1+\infty }\). Adv. Math. 139(1), 56–140 (1998)
- 12.
Kerov, S.: Transition probabilities of continual Young diagrams and the Markov moment problem. Funktsional. Anal. i Prilozhen. 27(2), 32–49 (1993)
- 13.
Kerov, S.: Anisotropic Young diagrams and symmetric Jack functions. Funktsional. Anal. i Prilozhen. 34(1), 51–64 (2000)
- 14.
Khovanov, M.: Heisenberg algebra and a graphical calculus. Fund. Math. 225(1), 169–210 (2014)
- 15.
Kleshchev, A.: Linear and Projective Representations of Symmetric Groups. Cambridge Tracts in Mathematics, 163. Cambridge University Press, Cambridge (2005)
- 16.
Kvinge, H., Licata, A.M., Mitchell, S.: Khovanov’s Heisenberg category, moments in free probability, and shifted symmetric functions. Algebr. Comb. 2(1), 49–74 (2019)
- 17.
Lascoux, A., Thibon, J.: Vertex operators and the class algebras of symmetric groups, , Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 283 no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 6, 156–177, 261 (2001)
- 18.
Macdonald, I.G.: Symmetric Functions and Hall Polynomials. Oxford Classic Texts in the Physical Sciences, vol. 2. The Clarendon Press, Oxford University Press (2015)
- 19.
Nazarov, M.: Young’s symmetrizers for projective representations of the symmetric group. Adv. Math. 127(2), 190–257 (1997)
- 20.
Okounkov, A., Olshanski, G.: Shifted Schur functions. Algebra i Analiz 9(2), 73–146 (1997)
- 21.
Ozan Oğuz, C., Reeks, M.: Trace of the twisted Heisenberg category. Comm. Math. Phys. 356(3), 1117–1154 (2017)
- 22.
Petrov, L.: Random walks on strict partitions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 373 no. Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XVII, 226–272, 351
- 23.
Read, E.W.: The \(\alpha \)-regular classes of the generalized symmetric group. Glasg. Math. J. 17(2), 144–150 (1976)
- 24.
Reeks, M.: Cocenters of Hecke–Clifford and spin Hecke algebras. J. Algebra 476, 85–112 (2017)
- 25.
Sergeev, A.N.: Tensor algebra of the identity representation as a module over the Lie superalgebras \({\rm Gl}(n,\, m)\) and \(Q(n)\). Mat. Sb. (N. S.) 123(165)(3), 422–430 (1984)
- 26.
Vershik, A.M., Sergeev, A.N.: A new approach to the representation theory of the symmetric groups. IV. \(Z_2\)-graded groups and algebras: projective representations of the group \(S_n\). Mosc. Math. J. 8(4), 813–842 (2008)
- 27.
Wan, J.: Completely splittable representations of affine Hecke–Clifford algebras. J. Algebraic Combin. 32(1), 15–58 (2010)
- 28.
Wan, J., Wang, W.: Lectures on spin representation theory of symmetric groups. In: Proceedings for Taipei Winter School 2010. Bulletin of Institute of Mathematics Academia Sinica, vol. 7, pp. 91–164 (2012)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kvinge, H., Oğuz, C.O. & Reeks, M. The center of the twisted Heisenberg category, factorial Schur Q-functions, and transition functions on the Schur graph. J Algebr Comb 52, 469–504 (2020). https://doi.org/10.1007/s10801-019-00910-w
Received:
Accepted:
Published:
Issue Date:
Keywords
- Hecke algebras
- Spin representation theory
- Schur Q-functions
- Schur graph