The spectra of lifted digraphs


We present a method to derive the complete spectrum of the lift \(\varGamma ^\alpha \) of a base digraph \(\varGamma \), with voltage assignment \(\alpha \) on a (finite) group G. The method is based on assigning to \(\varGamma \) a quotient-like matrix whose entries are elements of the group algebra \(\mathbb {C}[G]\), which fully represents \(\varGamma ^{\alpha }\). This allows us to derive the eigenvectors and eigenvalues of the lift in terms of those of the base digraph and the irreducible characters of G. Thus, our main theorem generalizes some previous results of Lovász and Babai concerning the spectra of Cayley digraphs.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Babai, L.: Spectra of Cayley graphs. J. Combin. Theory Ser. B 27, 180–189 (1979)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Bang-Jensen, J., Gutin, G.: Digraphs. Theory, Algorithms and Applications. Springer Monographs in Mathematics, 2nd edn. Springer, London (2009)

    Google Scholar 

  3. 3.

    Burrow, M.: Representation Theory of Finte Groups. Dover Publications, Inc., New York (1993)

    Google Scholar 

  4. 4.

    Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs. Theory and Applications, 3rd edn. Johann Ambrosius Barth, Heidelberg (1995)

    Google Scholar 

  5. 5.

    Dalfó, C., Fiol, M.A., Miller, M., Ryan, J., Širáň, J.: An Algebraic Approach to Lifts of Digraphs. Discrete Appl. Math. (2018, to appear)

  6. 6.

    Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heilderberg (2010)

    Google Scholar 

  7. 7.

    Feng, R., Kwak, J.H., Lee, J.: Characteristic polynomials of graph coverings. Bull. Aust. Math. Soc. 69, 133–136 (2004)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Gera, R., Stǎnicǎ, P.: The spectrum of generalized Petersen graphs. Australas. J. Combin. 49, 39–45 (2011)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Godsil, C.D., Hensel, A.D.: Distance regular covers of the complete graph. J. Combin. Theory Ser. B 56(2), 205–238 (1992)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gould, H.W.: The Girard-Waring power sum formulas for symmetric functions and Fibonacci sequences. Fibonacci Quart. 37(2), 135–140 (1999)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Gross, J.L., Tucker, T.W.: Generating all graph coverings by permutation voltage assignments. Discrete Math. 18, 273–283 (1977)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Klin, M., Pech, C.: A new construction of antipodal distance regular covers of complete graphs through the use of Godsil–Hensel matrices. Ars Math. Contemp. 4(2), 205–243 (2011)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Kwak, J.H., Lee, J.: Characteristic polynomials of some graph bundles II. Linear Multilinear Algebra 32, 61–73 (1992)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Kwak, J.H., Kwon, Y.S.: Characteristic polynomials of graph bundles having voltages in a dihedral group. Linear Algebra Appl. 336, 99–118 (2001)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Lovász, L.: Spectra of graphs with transitive groups. Period. Math. Hungar. 6, 191–196 (1975)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Miller, M., Širáň, J.: Moore graphs and beyond: a survey of the degree/diameter problem. Electron. J. Combin. 20(2), DS14v2 (2013)

    Google Scholar 

  17. 17.

    Mizuno, H., Sato, I.: Characteristic polynomials of some graph coverings. Discrete Math. 142, 295–298 (1995)

    MathSciNet  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. A. Fiol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 734922.


Research of the first two authors is supported by AGAUR under Project 2017SGR1087. The third author acknowledges support from the research Grants APVV 0136/12, APVV-15-0220, VEGA 1/0026/16, and VEGA 1/0142/17.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dalfó, C., Fiol, M.A. & Širáň, J. The spectra of lifted digraphs. J Algebr Comb 50, 419–426 (2019).

Download citation


  • Digraph
  • Adjacency matrix
  • Regular partition
  • Quotient digraph
  • Spectrum
  • Lifted digraph

Mathematics Subject Classification

  • 05C20
  • 05C50
  • 15A18