Journal of Algebraic Combinatorics

, Volume 49, Issue 1, pp 1–20 | Cite as

Depth and regularity modulo a principal ideal

  • Giulio Caviglia
  • Huy Tài Hà
  • Jürgen Herzog
  • Manoj Kummini
  • Naoki Terai
  • Ngo Viet TrungEmail author


We study the relationship between depth and regularity of a homogeneous ideal I and those of (If) and I : f, where f is a linear form or a monomial. Our results have several interesting consequences on depth and regularity of edge ideals of hypergraphs and of powers of ideals.


Depth Regularity Monomial ideal Powers of an ideal Edge ideal Very well-covered graph Chordal graph 

Mathematics Subject Classification

Primary 13C20 Secondary 13D45 14B05 05C65 



Giulio Caviglia is partially supported by the Simons Foundation (Grant #209661). Huy Tài Hà is partially supported by the Simons Foundation (Grant #279786). Ngo Viet Trung is partially supported by Vietnam National Foundation for Science and Technology Development (Grant #101.04-2017.19) and the project VAST.HTQT.NHAT.1/16-18. The main part of this work was done during research stays of the authors at the American Institute of Mathematics in the SQuaRE program “Ordinary powers and symbolic powers” during the period 2012–2014. The authors are grateful to S. A. Seyed Fakhari for pointing out a mistake of Theorem 5.1 in the first version of this paper and to an anonymous referee for mentioning that Lemma 4.1(i) and (ii) were already proved in [31] and [32], respectively.


  1. 1.
    Bandari, S., Herzog, J., Hibi, T.: Monomial ideals whose depth function has any given number of strict local maxima. Ark. Mat. 52, 11–19 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berlekamp, D.: Regularity defect stabilization of powers of an ideal. Math. Res. Lett. 19, 109–119 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Björner, A.: Topological methods. In: Graham, R.L., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1819–1872. Elsevier, Amsterdam (1995)Google Scholar
  4. 4.
    Brodmann, M.: The asymptotic nature of the analytic spread. Math. Proc. Camb. Philos. Soc. 86, 35–39 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bruns, W., Herzog, J.: Cohen–Macaulay Rings. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  6. 6.
    Constantinescu, A., Varbaro, M.: On the \(h\)-vectors of Cohen–Macaulay flag complexes. Math. Scand. 112, 86–111 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Crupi, M., Rinaldo, G., Terai, N.: Cohen–Macaulay edge ideals whose height is half of the number of vertices. Nagoya Math. J. 201, 116–130 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cutkosky, S.D., Herzog, J., Trung, N.V.: Asymptotic behaviour of the Castelnuovo–Mumford regularity. Compos. Math. 118(3), 243–261 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dao, H.L., Huneke, C., Schweig, J.: Bounds on the regularity and projective dimension of ideals associated to graphs. J. Algebr. Comb. 38(1), 37–55 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Favaron, O.: Very well-covered graphs. Discrete Math. 42(2–3), 177–187 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Francisco, C.A., Hà, H.T., Van Tuyl, A.: Colorings of hypergraphs, perfect graphs, and associated primes of powers of monomial ideals. J. Algebra 331, 224–242 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fröberg, R.: On Stanley–Reisner rings. In: Balcerzyk, S., Józefiak, T., Krempa, J., Simson, D., Vogel, W. (eds.) Topics in Algebra. Banach Center Publications, vol. 26(2), pp. 57–70 (1990)Google Scholar
  14. 14.
    Hà, H.T., Nguyen, H.D., Trung, N.V., Trung, T.N.: Symbolic powers of sums of ideals. Preprint arXiv:1702.01766
  15. 15.
    Hà, H.T., Trung, N.V., Trung, T.N.: Depth and regularity of powers of sums of ideals. Math. Z. 282(3–4), 819–838 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hà, H.T., Sun, M.: Squarefree monomial Ideals that fail the persistence property and non-increasing depth. Acta Math. Vietnam. 40, 125–137 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Herzog, J., Hibi, T.: The depth of powers of an ideal. J. Algebra 291, 534–550 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Herzog, J., Hibi, T.: Distributive lattices, bipartite graphs and Alexander duality. J. Algebr. Comb. 22(3), 289–302 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Herzog, J., Hibi, T.: Monomial Ideals. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Herzog, J., Hibi, T., Trung, N.V., Zheng, X.: Standard vertex cover algebras, cycles and leaves. Trans. Am. Math. Soc. 360(12), 6231–6249 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Herzog, J., Qureshi, A.A.: Persistence and stability properties of powers of ideals. J. Pure Appl. Algebra 219(3), 530–542 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hoa, L.T., Trung, N.V.: On the Castelnuovo–Mumford regularity and the arithmetic degree of monomial ideals. Math. Z. 229(3), 519–537 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kaiser, T., Stehlík, M., Skrekovski, R.: Replication in critical graphs and the persistence of monomial ideals. J. Comb. Theory Ser. A 123, 239–251 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kodiyalam, V.: Asymptotic behaviour of Castelnuovo–Mumford regularity. Proc. Am. Math. Soc. 128(2), 407–411 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kummini, M.: Homological invariants of monomial and binomial ideals. Thesis, University of Kansas (2008)Google Scholar
  26. 26.
    Kummini, M.: Regularity, depth and arithmetic rank of bipartite edge ideals. J. Algebr. Comb. 30, 429–445 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mahmoudi, M., Mousivand, A., Crupi, M., Rinaldo, G., Terai, N., Yassemi, S.: Vertex decomposability and regularity of very well-covered graphs. J. Pure Appl. Algebra 215, 2473–2480 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Martinez-Bernal, J., Morey, S., Villarreal, R.H.: Associated primes of powers of edge ideals. Collect. Math. 63(3), 361–374 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Minh, N.C., Trung, N.V.: Cohen–Macaulayness of monomial ideals and symbolic powers of Stanley–Reisner ideals. Adv. Math. 226, 1285–1306 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Nevo, E.: Regularity of edge ideals of \(C_4\)-free graphs via the topology of the lcm-lattice. J. Comb. Theory Ser. A 118, 491–501 (2011)CrossRefzbMATHGoogle Scholar
  31. 31.
    Rauf, A.: Depth and Stanley depth of multigraded modules. Commun. Algebra 38, 773–784 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Seyed Fakhari, S.A.: Symbolic powers of cover ideal of very well-covered and bipartite graphs. Proc. Am. Math. Soc. 146, 97–110 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Takayama, Y.: Combinatorial characterizations of generalized Cohen–Macaulay monomial ideals. Bull. Math. Soc. Sci. Math. Roum. (N.S.) 48, 327–344 (2005)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Trung, N.V.: Reduction exponent and degree bounds for the defining equations of a graded ring. Proc. Am. Math. Soc. 101, 229–236 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Trung, N.V.: Gröbner bases, local cohomology and reduction number. Proc. Am. Math. Soc. 129, 9–18 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Giulio Caviglia
    • 1
  • Huy Tài Hà
    • 2
  • Jürgen Herzog
    • 3
  • Manoj Kummini
    • 4
  • Naoki Terai
    • 5
  • Ngo Viet Trung
    • 6
    Email author
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsTulane UniversityNew OrleansUSA
  3. 3.Fachbereich 6, MathematikUniversität Duisburg-EssenEssenGermany
  4. 4.Chennai Mathematical InstituteSiruseriIndia
  5. 5.Faculty of Culture and EducationSaga UniversitySagaJapan
  6. 6.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations