Skip to main content
Log in

Partition identities and quiver representations

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

We present a particular connection between classical partition combinatorics and the theory of quiver representations. Specifically, we give a bijective proof of an analogue of A. L. Cauchy’s Durfee square identity to multipartitions. We then use this result to give a new proof of M. Reineke’s identity in the case of quivers \({\mathcal {Q}}\) of Dynkin type A. Our identity is stated in terms of the lacing diagrams of S. Abeasis–A. Del Fra, which parameterize orbits of the representation space of \({\mathcal {Q}}\) for a fixed dimension vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abeasis, S., Del Fra, A.: Degenerations for the representations of an equioriented quiver of type Am. Un. Mat. Ital. Suppl. 2, 157–171 (1980)

    MATH  Google Scholar 

  2. Andrews, G .E.: The Theory of Partitions. Cambridge University Press, Cambridge (1984). doi:10.1017/CBO9780511608650. ISBN 9780511608650

    Book  MATH  Google Scholar 

  3. Bouwknegt, P.: Multipartitions, generalized Durfee squares and affine Lie algebra characters. J. Aust. Math. Soc. 72(3), 395–408 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Boulet, C.: Dysons new symmetry and generalized Rogers–Ramanujan identities. Ann. Comb. 14(2), 159–191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buch, A., Rimnyi, R.: A formula for non-equioriented quiver orbits of type A. J. Algebraic Geom. 16(3), 531–546 (2007). ISSN 1056-3911

    Article  MathSciNet  MATH  Google Scholar 

  6. Brion, M.: Representations of quivers. École thématique. Institut Fourier, pp. 48 (2008)

  7. Davison, B., Meinhardt, S.: Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. arXiv:1601.02479 (2016)

  8. Fock, V .V., Goncharov, A .B.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér. (4) 42(6), 865–930 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9(05), 427–434 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faddeev, L., Volkov, A.Y.: Abelian current algebra and the Virasoro algebra on the lattice. Phys. Lett. B 315(3–4), 311–318 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gordon, B., Houten, L.: Notes on plane partitions. II. J. Comb. Theory 4(1), 81–99 (1968). ISSN 0021-9800

    Article  MathSciNet  MATH  Google Scholar 

  12. Keller, B.: On cluster theory and quantum dilogarithm identities. In: Representations of Algebras and Related Topics. EMS Ser. Congr. Rep., pp. 85–116. Eur. Math. Soc., Zürich (2011)

  13. Knutson, A., Miller, E., Shimozono, M.: Four positive formulae for type A quiver polynomials. Invent. Math. 166(2), 229–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Number Theory Phys. 5(2), 231–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Reineke, M.: Feigin’s map and monomial bases for quantized enveloping algebras. Math. Z. 237(3), 639–667 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Reineke, M.: Poisson automorphisms and quiver moduli. J. Inst. Math. Jussieu 9(03), 653–667 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rimányi, R.: On the cohomological Hall algebra of Dynkin quivers. arXiv:1303.3399 (2013)

  18. Ringel, C.M.: The rational invariants of the tame quivers. Invent. Math. 58(3), 217–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schutzenberger, M.-P.: Une interpretation de certaines solutions de l’equation fonctionnelle-f(x + y) = f(x)f(y). C. R. Hebd. Seances Acad. Sci. 236(4), 352–354 (1953)

    MATH  Google Scholar 

  20. Schilling, A., Warnaar, S.O.: Supernomial coefficients, polynomial identities and q-series. Ramanujan J. 2(4), 459–494 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Bruce Berndt and Ae Ja Yee for historical references concerning Durfee square identities. We also thank an anonymous referee for their helpful remarks. RR was supported in part by NSF Grant DMS-1200685. AW and AY were supported by a UIUC Campus Research Board and by an NSF grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Weigandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rimányi, R., Weigandt, A. & Yong, A. Partition identities and quiver representations. J Algebr Comb 47, 129–169 (2018). https://doi.org/10.1007/s10801-017-0771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-017-0771-5

Keywords

Navigation