Skip to main content
Log in

Abstract

The Cartan scheme \(\mathcal{X}\) of a finite group G with a (BN)-pair is defined to be the coherent configuration associated with the action of G on the right cosets of the Cartan subgroup \(B\cap N\) by right multiplication. It is proved that if G is a simple group of Lie type, then asymptotically the coherent configuration \(\mathcal{X}\) is 2-separable, i.e., the array of 2-dimensional intersection numbers determines \(\mathcal{X}\) up to isomorphism. It is also proved that in this case, the base number of \(\mathcal{X}\) equals 2. This enables us to construct a polynomial-time algorithm for recognizing Cartan schemes when the rank of G and the order of the underlying field are sufficiently large. One of the key points in the proof is a new sufficient condition for an arbitrary homogeneous coherent configuration to be 2-separable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Notes

  1. In the complete colored graph representing \(\mathcal{X}\), k is the maximum number of the monochrome arcs incident to a vertex, and c is the maximum number of triangles with fixed base; the other two sides of which are monochrome arcs.

  2. In the case of Suzuki and Ree groups, \(q=2^{2\alpha +1}\) for \({}^2B_2(q)\) and \({}^2F_4(q)\), and \(q=3^{2\alpha +1}\) for \({}^2G_2(q)\), where \(\alpha >1\) is an integer.

  3. The alternative way to establish the same is to apply Zenkov’s theorem [22]. It yields that since H is abelian, there is an element \(g_0\in G\) such that \(H\cap H^{g_0}\) lies in the Fitting subgroup of G, which is trivial if the group G is simple.

  4. It is worth noting that in ‘an asymptotical sense’ the required lower bounds can be taken from [15, Lemma 3.4]. We choose to use the results of the later paper [5] in order to obtain the numerical values of \(l_0\) and a.

  5. It is worth mentioning that despite [5, Tables 3.7–3.9] contain the bounds on the sizes of conjugacy classes in the group \({\text {Inndiag}}(G)\) rather than G itself, the bounds for \(m_0\) in Table 5 are correct, because \(|G:C_G(h)|=|{\text {Inndiag}}(G):C_{{\text {Inndiag}}(G)}(h)|\) for every \(h\in H\) (see, e.g., the definition of the diagonal automorphism in [6, Sec. 12.2]).

References

  1. Abramenko, P., Parkinson, J., Van Maldeghem, H.: Distance regularity in buildings and structure constants in Hecke algebras. arXiv:1508.03912 [math.CO] 1–23 (2015)

  2. Bailey, R.F., Cameron, P.J.: Base size, metric dimension, and other invariants of groups and graphs. Bull. Lond. Math. Soc. 43, 209–242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bannai, E., Ito, T.: Algebraic Combinatorics. I Benjamin/Cummings, Menlo Park, CA (1984)

    MATH  Google Scholar 

  4. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3, 18th edn. Springer, Berlin (1989)

    Google Scholar 

  5. Burness, T.C.: Fixed point ratios in actions of finite classical groups, II. J. Algebra 309, 80–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carter, R.W.: Simple Groups of Lie Type. Wiley, London (1972)

    MATH  Google Scholar 

  7. Carter, R.W.: Finite Groups of Lie Type. Conjugacy Classes and Complex Characters. Wiley, London (1985)

    MATH  Google Scholar 

  8. De Medts, T., Haot, F., Tent, K., Van Maldeghem, H.: Split BN-pairs of rank at least 2 and the uniqueness of splittings. J. Group Theory 8(1), 1–10 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deriziotis, D.: The centralizers of semisimple elements of the Chevalley groups \(E_7\) and \(E_8\). Tokyo J. Math. 6(1), 191–216 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deriziotis, D.: Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen, Heft 11 (1984)

  11. Dixon, J.D., Mortimer, B.: Permutation Groups, Graduate Texts in Mathematics. Springer, New York (1996)

  12. Evdokimov, S., Ponomarenko, I.: Separability number and schurity number of coherent configurations. Electron. J. Comb. 7, R31 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Evdokimov, S., Ponomarenko, I.: Permutation group approach to association schemes. Eur. J. Comb. 30, 1456–1476 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kimmerle, W., Lyons, R., Sandling, R., Teague, D.N.: Composition factors from the group ring and Artin’s theorem on orders of simple groups. Proc. Lond. Math. Soc. Ser. 60(1), 89–122 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liebeck, M.W., Shalev, A.: Simple groups, permutation groups, and probability. J. Am. Math. Soc. 12(2), 497–520 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Muzychuk, M., Ponomarenko, I.: On Pseudocyclic association schemes. Ars Math. Contemp. 5(1), 1–25 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Ponomarenko, I.: Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments. J. Math. Sci. 192(3), 316–338 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saxl, J., Shalev, A.: The fixity of permutation groups. J. Algebra 174, 1122–1140 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Veldkamp, F.D.: Roots and maximal tori in finite forms of semisimple algebraic groups. Math. Ann. 207, 301–314 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vdovin, E.P.: On intersections of solvable Hall subgroups in finite simple exceptional groups of Lie type. Proc. Steklov Institute Math. 285(1), S1–S8 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Weisfeiler, B. (ed.): On Construction and Identification of Graphs, Springer Lecture Notes in Mathematics, 558 (1976)

  22. Zenkov, V.I.: Intersection of abelian subgroups in finite groups. Math. Notes 56(2), 869–871 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zieschang, P.-H.: Theory of Association Schemes. Springer, Berlin (2005)

    MATH  Google Scholar 

  24. Zieschang, P.-H.: Trends and lines of development in scheme theory. Eur. J. Comb. 30, 1540–1563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Ponomarenko.

Additional information

The work of the first and the second authors was partially supported, respectively, by the Grant RFBR No. 14-01-00156 and RFFI Grant No. 13-01-00505.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarenko, I., Vasil’ev, A. Cartan coherent configurations. J Algebr Comb 45, 525–552 (2017). https://doi.org/10.1007/s10801-016-0715-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-016-0715-5

Keywords

Navigation