Bayer, D., Popescu, S., Sturmfels, B.: Syzygies of unimodular Lawrence ideals. Journal für die Reine und Angewandte Mathematik 534, 169–186 (2001)
MathSciNet
MATH
Google Scholar
Conradi, C., Kahle, T.: Detecting binomiality. Adv. Appl. Math. 71, 52–67 (2015)
MathSciNet
Article
MATH
Google Scholar
De Loera, J.A., Hemmecke, R., Köppe, M.: Algebraic and Geometric Ideas in the Theory of Discrete Optimization. MPS-SIAM Series on Optimization, SIAM, Cambridge (2013)
MATH
Google Scholar
Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics, Oberwolfach Seminars, A Birkhäuser book, vol. 39, Springer, Berlin (2009)
Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84(1), 1–45 (1996)
MathSciNet
Article
MATH
Google Scholar
Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
Grossman, J.W., Kulkarni, D.M., Schochetman, I.E.: On the minors of an incidence matrix and its Smith normal form. Linear Algebra Appl. 218(1995), 213–224 (1995)
MathSciNet
Article
MATH
Google Scholar
Herzog, J., Hibi, T., Hreinsdóttir, F., Kahle, T., Rauh, J.: Binomial edge ideals and conditional independence statements. Adv. Appl. Math. 45(3), 317–333 (2010)
MathSciNet
Article
MATH
Google Scholar
Herzog, J., Macchia, A., Madani, S.S., Welker, V.: On the ideal of orthogonal representations of a graph. Adv. Appl. Math. 71, 146–173 (2015)
MathSciNet
Article
MATH
Google Scholar
Hoşten, S., Shapiro, J.: Primary decomposition of lattice basis ideals. J. Symb. Comput. 29(4–5), 625–639 (2000)
MathSciNet
MATH
Google Scholar
Hoşten, S., Sullivant, S.: Ideals of adjacent minors. J. Algebra 277(2), 615–642 (2004)
MathSciNet
Article
MATH
Google Scholar
Kahle, T.: Decompositions of binomial ideals. J. Softw. Algebra Geom. 4, 1–5 (2012)
MathSciNet
Article
MATH
Google Scholar
Kahle, T., Miller, E.: Decompositions of commutative monoid congruences and binomial ideals. Algebra Number Theory 8(6), 1297–1364 (2014)
MathSciNet
Article
MATH
Google Scholar
Kahle, T., Rauh, J., Sullivant, S.: Positive margins and primary decomposition. J. Commut. Algebra 6(2), 173–208 (2014)
MathSciNet
Article
MATH
Google Scholar
Miller, E.: Theory and applications of lattice point methods for binomial ideals. In: Proceedings of the Abel Symposium held at Voss, Norway, 2009, pp. 99–154. Springer (2011)
Miller, E.: Affine stratifications from finite misère quotients. J. Algebraic Comb. 37(1), 1–9 (2013)
Article
MATH
Google Scholar
Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems with toric steady states. Bull. Math. Biol. 74, 1027–1065 (2012)
Rauh, J., Sullivant, S.: Lifting Markov bases and higher codimension toric fiber products. J. Symb. Comput. 74, 276–307 (2016). doi:10.1016/j.jsc.2015.07.003
MathSciNet
Article
MATH
Google Scholar
Swanson, I.: On the embedded primes of the Mayr–Meyer ideals. J. Algebra 275, 143–190 (2004)
MathSciNet
Article
MATH
Google Scholar
Windisch, T.: BinomialEdgeIdeals, a Macaulay2 package for (parity) binomial edge ideals.https://github.com/windisch/BinomialEdgeIdeals