Journal of Algebraic Combinatorics

, Volume 37, Issue 3, pp 523–543

Zero-divisor graphs of nilpotent-free semigroups



We find strong relationships between the zero-divisor graphs of apparently disparate kinds of nilpotent-free semigroups by introducing the notion of an Armendariz map between such semigroups, which preserves many graph-theoretic invariants. We use it to give relationships between the zero-divisor graph of a ring, a polynomial ring, and the annihilating-ideal graph. Then we give relationships between the zero-divisor graphs of certain topological spaces (so-called pearled spaces), prime spectra, maximal spectra, tensor-product semigroups, and the semigroup of ideals under addition, obtaining surprisingly strong structure theorems relating ring-theoretic and topological properties to graph-theoretic invariants of the corresponding graphs.


Zero-divisor graph Armendariz map Graph invariants Annihilating-ideal graph Comaximal graph Nilpotent-free semigroup 


  1. 1.
    Aalipour, G., Akbari, S., Nikandish, R., Nikmehr, M., Shaveisi, F.: On the coloring of the annihilating-ideal graph of a commutative ring. Discrete Math. (2011). doi:10.1016/j.disc.2011.10.020
  2. 2.
    Anderson, D.F., Livingston, P.S.: The zero-divisor graph of a commutative ring. J. Algebra 217(2), 434–447 (1999) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Anderson, D.F., Mulay, S.B.: On the diameter and girth of a zero-divisor graph. J. Pure Appl. Algebra 210(2), 543–550 (2007) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Armendariz, E.P.: A note on extensions of Baer and P.P.-rings. J. Aust. Math. Soc. 18, 470–473 (1974) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Beck, I.: Coloring of commutative rings. J. Algebra 116(1), 208–226 (1988) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings I. J. Algebra Appl. 10(4), 727–739 (2011) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Behboodi, M., Rakeei, Z.: The annihilating-ideal graph of commutative rings II. J. Algebra Appl. 10(4), 741–753 (2011) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bhatwadekar, S.M., Sharma, P.K.: A note on graphical representation of rings. J. Algebra 176(1), 124–127 (1995) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, New York (2002) MATHCrossRefGoogle Scholar
  10. 10.
    DeMeyer, F.R., McKenzie, T., Schneider, K.: The zero-divisor graph of a commutative semigroup. Semigroup Forum 65(2), 206–214 (2002) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Dunham, W.: T 1/2-spaces. Kyungpook Math. J. 17(2), 161–169 (1977) MathSciNetMATHGoogle Scholar
  12. 12.
    Kemper, G.: A Course in Commutative Algebra. Graduate Texts in Mathematics, vol. 256. Springer, Heidelberg (2011) MATHGoogle Scholar
  13. 13.
    Levine, N.: Generalized closed sets in topology. Rend. Circ. Mat. Palermo 19, 89–96 (1970) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lu, D., Wu, T., Ye, M., Yu, H.: On graphs related to the co-maximal ideals of a commutative ring (2011). arXiv:1106.0072v1
  15. 15.
    Mulay, S.B.: Cycles and symmetries of zero-divisors. Commun. Algebra 30(7), 3533–3558 (2002) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Nasehpour, P., Payrovi, S.: Modules having very few zero-divisors. Commun. Algebra 38(9), 3154–3162 (2010) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Spiroff, S., Wickham, C.: A zero divisor graph determined by equivalence classes of zero divisors. Commun. Algebra 39(7), 2338–2348 (2011) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Watkins, J.J.: Topics in Commutative Ring Theory. Princeton University Press, Princeton (2007) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institut für MathematikUniversität OsnabrückOsnabrückGermany
  2. 2.Department of Engineering Science, Faculty of EngineeringUniversity of TehranTehranIran

Personalised recommendations