Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of Algebraic Combinatorics
  3. Article
Multigraded combinatorial Hopf algebras and refinements of odd and even subalgebras
Download PDF
Download PDF
  • Published: 03 March 2011

Multigraded combinatorial Hopf algebras and refinements of odd and even subalgebras

  • Samuel K. Hsiao1 &
  • Gizem Karaali2 

Journal of Algebraic Combinatorics volume 34, pages 451–506 (2011)Cite this article

  • 239 Accesses

  • 4 Citations

  • Metrics details

Abstract

We develop a theory of multigraded (i.e., ℕl-graded) combinatorial Hopf algebras modeled on the theory of graded combinatorial Hopf algebras developed by Aguiar et al. (Compos. Math. 142:1–30, 2006). In particular we introduce the notion of canonical k-odd and k-even subalgebras associated with any multigraded combinatorial Hopf algebra, extending simultaneously the work of Aguiar et al. and Ehrenborg. Among our results are specific categorical results for higher level quasisymmetric functions, several basis change formulas, and a generalization of the descents-to-peaks map.

Article PDF

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Aguiar, M.: Infinitesimal Hopf algebras and the cd-index of polytopes. Discrete Comput. Geom. 27(1), 3–28 (2002). Geometric combinatorics (San Francisco, CA/Davis, CA, 2000)

    MathSciNet  Google Scholar 

  2. Aguiar, M., Hsiao, S.K.: Canonical characters on quasi-symmetric functions and bivariate Catalan numbers. J. Comb. 11(2), 15 (2004/2006) 34 pp. (electronic)

    MathSciNet  Google Scholar 

  3. Aguiar, M., Sottile, F.: Structure of the Malvenuto-Reutenauer Hopf algebra of permutations. Adv. Math. 191(2), 225–275 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn–Sommerville relations. Compos. Math. 142(1), 1–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aval, J.-C., Bergeron, F., Bergeron, N.: Diagonal Temperley–Lieb invariants and harmonics. Sémin. Lothar. Comb. 54A, B54Aq (2005/2007) 19 pp. (electronic)

    MathSciNet  Google Scholar 

  6. Baumann, P., Hohlweg, C.: A Solomon descent theory for the wreath products \(G\wr \mathfrak{S}_{n}\). Trans. Am. Math. Soc. 360(3), 1475–1538 (2008) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bayer, M.M., Billera, L.J.: Generalized Dehn–Sommerville relations for polytopes, spheres and Eulerian partially ordered sets. Invent. Math. 79(1), 143–157 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergeron, N., Hohlweg, C.: Coloured peak algebras and Hopf algebras. J. Algebr. Comb. 24(3), 299–330 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bergeron, N., Mykytiuk, S., Sottile, F., van Willigenburg, S.: Noncommutative Pieri operators on posets. J. Comb. Theory, Ser. A 91(1–2), 84–110 (2000). In memory of Gian-Carlo Rota

    Article  MATH  Google Scholar 

  10. Bergeron, N., Mykytiuk, S., Sottile, F., van Willigenburg, S.: Personal communication (2001)

  11. Bergeron, N., Mykytiuk, S., Sottile, F., van Willigenburg, S.: Shifted quasi-symmetric functions and the Hopf algebra of peak functions. Discrete Math. 246(1–3), 57–66 (2002). English, with English and French summaries, Formal power series and algebraic combinatorics (Barcelona, 1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bergeron, N., Hivert, F., Thibon, J.-Y.: The peak algebra and the Hecke–Clifford algebras at q=0. J. Comb. Theory, Ser. A 107(1), 1–19 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Billera, L.J., Hsiao, S.K., van Willigenburg, S.: Peak quasisymmetric functions and Eulerian enumeration. Adv. Math. 176(2), 248–276 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Billera, L.J., Liu, N.: Noncommutative enumeration in graded posets. J. Algebr. Comb. 12(1), 7–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Billey, S., Haiman, M.: Schubert polynomials for the classical groups. J. Am. Math. Soc. 8(2), 443–482 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duchamp, G., Hivert, F., Thibon, J.-Y.: Noncommutative symmetric functions. VI. Free quasi-symmetric functions and related algebras. Int. J. Algebra Comput. 12(5), 671–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ehrenborg, R.: On posets and Hopf algebras. Adv. Math. 119(1), 1–25 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ehrenborg, R.: k-Eulerian posets. Order 18(3), 227–236 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., Thibon, J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218–348 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gessel, I.M.: Multipartite P-partitions and inner products of skew Schur functions. In: Combinatorics and Algebra, Boulder, CO, 1983. Contemp. Math., vol. 34, pp. 289–317. Amer. Math. Soc., Providence (1984)

    Google Scholar 

  21. Gessel, I.M.: Enumerative applications of symmetric functions. Sémin. Lothar. Comb. B17a (1987) 17pp.

  22. Hoffman, M.E.: Quasi-shuffle products. J. Algebr. Comb. 11(1), 49–68 (2000)

    Article  MATH  Google Scholar 

  23. Hsiao, S.K., Petersen, T.K.: Colored posets and colored quasisymmetric functions. Ann. Comb. (2010). doi:10.1007/s00026-010-0059-0

    MathSciNet  Google Scholar 

  24. Krob, D., Leclerc, B., Thibon, J.-Y.: Noncommutative symmetric functions. II. Transformations of alphabets. Int. J. Algebra Comput. 7(2), 181–264 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Loday, J.-L.: On the algebra of quasi-shuffles. Manuscr. Math. 123(1), 79–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. MacMahon, P.A.: Combinatory Analysis. Dover Phoenix Editions, vols. I, II. Dover, Mineola (2004). (Bound in one volume) Reprint of An introduction to combinatory analysis (1920) and Combinatory analysis. Vols. I, II (1915, 1916)

    MATH  Google Scholar 

  27. Malvenuto, C., Reutenauer, C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mantaci, R., Reutenauer, C.: A generalization of Solomon’s algebra for hyperoctahedral groups and other wreath products. Commun. Algebra 23(1), 27–56 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Novelli, J.-C., Thibon, J.-Y.: Free quasi-symmetric functions of arbitrary level (2004). Available at http://arxiv.org/abs/math.CO/0405597

  30. Novelli, J.-C., Thibon, J.-Y.: Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions (2008). Available at http://arxiv.org/abs/0806.3682

  31. Poirier, S.: Cycle type and descent set in wreath products. In: Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics, Noisy-le-Grand, 1995, pp. 315–343 (1998)

    Google Scholar 

  32. Reutenauer, C.: Free Lie Algebras. London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press, New York (1993)

    MATH  Google Scholar 

  33. Schocker, M.: The peak algebra of the symmetric group revisited. Adv. Math. 192(2), 259–309 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stanley, R.P.: Flag-symmetric and locally rank-symmetric partially ordered sets. Electron. J. Comb. 3(2), 6 (1996). Approx. 22 pp. (electronic). The Foata Festschrift

    MathSciNet  Google Scholar 

  35. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (1997). With a foreword by Gian-Carlo Rota; Corrected reprint of the 1986 original

    MATH  Google Scholar 

  36. Stembridge, J.R.: Enriched P-partitions. Trans. Am. Math. Soc. 349(2), 763–788 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Mathematics Program, Bard College, Annandale-on-Hudson, NY, 12504, USA

    Samuel K. Hsiao

  2. Department of Mathematics, Pomona College, Claremont, CA, 91711, USA

    Gizem Karaali

Authors
  1. Samuel K. Hsiao
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Gizem Karaali
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Samuel K. Hsiao.

Additional information

This work began while S.K. Hsiao was supported by an NSF Postdoctoral Research Fellowship.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hsiao, S.K., Karaali, G. Multigraded combinatorial Hopf algebras and refinements of odd and even subalgebras. J Algebr Comb 34, 451–506 (2011). https://doi.org/10.1007/s10801-011-0279-3

Download citation

  • Received: 04 November 2009

  • Accepted: 08 February 2011

  • Published: 03 March 2011

  • Issue Date: November 2011

  • DOI: https://doi.org/10.1007/s10801-011-0279-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Combinatorial Hopf algebra
  • Multigraded Hopf algebra
  • Quasisymmetric function
  • Symmetric function
  • Noncommutative symmetric function
  • Eulerian poset
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

3.239.2.192

Not affiliated

Springer Nature

© 2023 Springer Nature