Algebraic curves and maximal arcs

Abstract

A lower bound on the minimum degree of the plane algebraic curves containing every point in a large point-set \(\mathcal{K}\) of the Desarguesian plane PG(2,q) is obtained. The case where \(\mathcal{K}\) is a maximal (k,n)-arc is considered in greater depth.

References

  1. 1.

    Abatangelo, V., Korchmáros, G.: A generalization of a theorem of B. Segre on regular points with respect to an ellipse of an affine Galois plane. Ann. Mat. Pure Appl. 72, 87–102 (1997)

    Article  Google Scholar 

  2. 2.

    Abatangelo, V., Larato, B.: A characterization of Denniston’s maximal arcs. Geom. Dedicata 30, 197–203 (1989)

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Aguglia, A., Giuzzi, L.: An algorithm for constructing some maximal arcs in PG(2,q 2). Results Math., to appear. http://arxiv.org/abs/math/0611466

  4. 4.

    Aguglia, A., Korchmáros, G.: Blocking sets of external lines to a conic in PG(2,q), q odd. Combinatorica 26(4), 379–394 (2006)

    MATH  Article  MathSciNet  Google Scholar 

  5. 5.

    Ball, S., Blokhuis, A.: On the size of a double blocking set in PG(2,q). Finite Fields Appl. 2(2), 125–137 (1996)

    MATH  Article  MathSciNet  Google Scholar 

  6. 6.

    Ball, S., Blokhuis, A.: An easier proof of the maximal arcs conjecture. Proc. Am. Math. Soc. 126(11), 3377–3380 (1998)

    MATH  Article  MathSciNet  Google Scholar 

  7. 7.

    Ball, S., Blokhuis, A., Mazzocca, F.: Maximal arcs in Desarguesian planes of odd order do not exist. Combinatorica 17(1), 31–41 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    Barlotti, A.: Sui (k,n)-archi di un piano lineare finito. Boll. Un. Mat. Ital. 11(3), 553–556 (1956)

    MATH  MathSciNet  Google Scholar 

  9. 9.

    Denniston, R.H.F.: Some maximal arcs in finite projective planes. J. Comb. Theory 6, 317–319 (1969)

    MATH  Article  MathSciNet  Google Scholar 

  10. 10.

    Giulietti, M.: Blocking sets of external lines to a conic in PG(2,q), q even. Eur. J. Comb. 28(1), 36–42 (2007)

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    Goppa, V.D.: Geometry and Codes. Kluwer, Amsterdam (1988)

    MATH  Google Scholar 

  12. 12.

    Hamilton, N., Mathon, R.: More maximal arcs in Desarguesian projective planes and their geometric structure. Adv. Geom. 3, 251–261 (2003)

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Hamilton, N., Penttila, T.: A Characterisation of Thas maximal arcs in translation planes of square order. J. Geom. 51(1–2), 60–66 (1994)

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Hamilton, N., Penttila, T.: Groups of maximal arcs. J. Comb. Theory Ser. A 94(1), 63–86 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Hirschfeld, J.W.P.: Projective Geometries over Finite Fields, 2nd edn. OUP, Oxford (1998)

    Google Scholar 

  16. 16.

    Hirschfeld, J.W.P., Korchmáros, G.: Arcs and curves over finite fields. Finite Fields Appl. 5(4), 393–408 (1999)

    MATH  Article  MathSciNet  Google Scholar 

  17. 17.

    Leep, D.B., Yeomans, C.C.: The number of points on a singular curve over a finite field. Arch. Math. (Basel) 63(5), 420–426 (1994)

    MATH  MathSciNet  Google Scholar 

  18. 18.

    Mathon, R.: New maximal arcs in Desarguesian planes. J. Comb. Theory Ser. A 97(2), 353–368 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    Seidenberg, A.: Elements of the Theory of Algebraic Curves. Addison–Wesley, Reading (1968)

    Google Scholar 

  20. 20.

    Stöhr, K.O., Voloch, J.F.: Weierstrass points and curves over finite fields. Proc. Lond. Math. Soc. (3) 52(1), 1–19 (1986)

    MATH  Article  Google Scholar 

  21. 21.

    Tallini, G.: Sulle ipersuperficie irriducibili d’ordine minimo che contengono tutti i punti di uno spazio di Galois S r,q . Rend. Mat. Appl. (5) 20, 431–479 (1961)

    MATH  MathSciNet  Google Scholar 

  22. 22.

    Tallini, G.: Le ipersuperficie irriducibili d’ordine minimo che invadono uno spazio di Galois. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 30, 706–712 (1961)

    MATH  MathSciNet  Google Scholar 

  23. 23.

    Thas, J.A.: Construction of maximal arcs and partial geometries. Geom. Dedicata 3, 61–64 (1974)

    MATH  MathSciNet  Google Scholar 

  24. 24.

    Thas, J.A.: Construction of maximal arcs and dual ovals in translation planes. Eur. J. Comb. 1(2), 189–192 (1980)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Giuzzi.

Additional information

Research supported by the Italian Ministry MURST, Strutture geometriche, combinatoria e loro applicazioni.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aguglia, A., Giuzzi, L. & Korchmáros, G. Algebraic curves and maximal arcs. J Algebr Comb 28, 531–544 (2008). https://doi.org/10.1007/s10801-008-0122-7

Download citation

Keywords

  • Algebraic curves
  • Maximal arcs