Skip to main content
Log in

Boosting power output in microbial fuel cell with sulfur-doped MXene/polypyrrole hydrogel anode for enhanced extracellular electron transfer process

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Microbial fuel cell (MFC) has been regarded as a promising green and clean electricity generation device. The anode plays a crucial role in the electricity generation process within the MFC. This study employed a hydrothermal method for the doping of sulfur onto MXene nanosheets to alleviate the stacking, followed by an in situ polymerization process to fabricate sufur-doped MXene/polypyrrole (S–MXene/PPy) composite hydrogel on carbon felt (CF). The MFC constructed with this anode exhibited the highest power density of 8.05 W m−3 and a maximum output voltage of 646 mV, higher than that of MXene/PPy (623 mV, 6.03 W m−3), PPy (594 mV, 4.91 W m−3), and unmodified CF (574 mV, 4.05 W m−3). This improved performance can be attributed to the reduction of charge transfer resistance in the material while improving the bacteria affinity, leading to enhanced extracellular electron transfer (EET) efficiency. High-throughput sequencing indicates that the excellent biocompatibility significantly promotes the attachment and growth of electroactive microorganisms (Geobacter, 45.34%) on the S–MXene/PPy anode. This study demonstrates that S–MXene/PPy hydrogel has good potential as an anode from the perspective of MFC electricity generation and microbial analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37(1):181–189. https://doi.org/10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  2. Mukherjee P, Saravanan P (2019) Perspective view on materialistic, mechanistic and operating challenges of microbial fuel cell on commercialisation and their way ahead. ChemistrySelect 4(5):1601–1612. https://doi.org/10.1002/slct.201802694

    Article  CAS  Google Scholar 

  3. Zhu NW, Chen X, Zhang T, Wu PX, Li P, Wu JH (2011) Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes. Bioresour Technol 102(1):422–426. https://doi.org/10.1016/j.biortech.2010.06.046

    Article  CAS  PubMed  Google Scholar 

  4. Zhou MH, Chi ML, Luo JM, He HH, Jin T (2011) An overview of electrode materials in microbial fuel cells. J Power Sources 196(10):4427–4435. https://doi.org/10.1016/j.jpowsour.2011.01.012

    Article  CAS  Google Scholar 

  5. Hindatu Y, Annuar MSM, Gumel AM (2017) Mini-review: anode modification for improved performance of microbial fuel cell. Renew Sust Energ Rev 73:236–248. https://doi.org/10.1016/j.rser.2017.01.138

    Article  CAS  Google Scholar 

  6. Sonawane JM, Yadav A, Ghosh PC, Adeloju SB (2017) Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Biosens Bioelectron 90:558–576. https://doi.org/10.1016/j.bios.2016.10.014

    Article  CAS  PubMed  Google Scholar 

  7. Palanisamy G, Jung HY, Sadhasivam T, Kurkuri MD, Kim SC, Roh SH (2019) A compre-hensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes. J Clean Prod 221:598–621. https://doi.org/10.1016/j.jclepro.2019.02.172

    Article  CAS  Google Scholar 

  8. Moradian JM, Yang FQ, Xu N, Wang JY, Wang JX, Sha C, Ali A, Yong YC (2022) Enhancement of bioelectricity and hydrogen production from xylose by a nanofiber polyaniline modified anode with yeast microbial fuel cell. Fuel 326:125056. https://doi.org/10.1016/j.fuel.2022.125056

    Article  CAS  Google Scholar 

  9. Liu YF, Wang JN, Li HY, Zhai ZY, Guo SQ, Ren TL, Li CJ (2022) Nitrogen-doped carbo-n nanofibers anchoring Fe nanoparticles as biocompatible anode for boosting extracellular electron transfer in microbial fuel cells. J Power Sources 544:231890. https://doi.org/10.1016/j.jpowsour.2022.231890

    Article  CAS  Google Scholar 

  10. Geetanjali DSK, Kundu PP (2022) Development of polypyrrole nanotube coated with chitosan and nickel oxide as a biocompatible anode to enhance the power generation in microbial fuel cell. J Power Sources 539:231595. https://doi.org/10.1016/j.jpowsour.2022.231595

    Article  CAS  Google Scholar 

  11. Ma HY, Zheng Y, Xian JL, Feng ZJ, Li Z, Cui FY (2022) A light-enhanced α-FeOOH nan-owires/polyaniline anode for improved electricity generation performance in microbial fu-el cells. Chemosphere 296:133994. https://doi.org/10.1016/j.chemosphere.2022.133994

    Article  CAS  PubMed  Google Scholar 

  12. Liu H, Logan BE (2004) Electricity generation using an air-cathode single chamber micr-obial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38(14):4040–4046. https://doi.org/10.1021/es0499344

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Qiao Y, Guo CX, Lim S, Song H, Li CM (2012) Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells. Bioresour Technol 114:275–280. https://doi.org/10.1016/j.biortech.2012.02.116

    Article  CAS  PubMed  Google Scholar 

  14. Nosek D, Jachimowicz P, Cydzik-Kwiatkowska A (2020) Anode modification as an alter-native approach to improve electricity generation in microbial fuel cells. Energies 13(24):6596. https://doi.org/10.3390/en13246596

    Article  CAS  Google Scholar 

  15. Zhai DD, Fang Z, Jin HW, Hui M, Kirubaharan CJ, Yu YY, Yong YC (2019) Vertical alignment of polyaniline nanofibers on electrode surface for high-performance microbial fuel cells. Bioresour Technol 288:121499. https://doi.org/10.1016/j.biortech.2019.121499

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Li B, Wang SP, Liu TB, Jia BY, Liu WZ, Dong P (2022) Metal-organic framework-derived iron oxide modified carbon cloth as a high-power density microbial fuel cell a-node. J Clean Prod 341:130725. https://doi.org/10.1016/j.jclepro.2022.130725

    Article  CAS  Google Scholar 

  17. Phonsa S, Sreearunothai P, Charojrochkul S, Sombatmankhong K (2018) Electrode-position of MnO2 on polypyrrole-coated stainless steel to enhance electrochemical activities in microbial fuel cells. Solid State Ion 316:125–134. https://doi.org/10.1016/j.ssi.2017.11.022

    Article  CAS  Google Scholar 

  18. Pu KB, Ma Q, Cai WF, Chen QY, Wang YH, Li FJ (2018) Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochem Eng J 132:255–261. https://doi.org/10.1016/j.bej.2018.01.018

    Article  CAS  Google Scholar 

  19. Kim M, Li SW, Kong DS, Song YE, Park SY, Kim HI, Jae J, Chung I, Kim JR (2023) Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell. Chemosphere 313:137388. https://doi.org/10.1016/j.chemosphere.2022.137388

    Article  CAS  PubMed  Google Scholar 

  20. Adorinni S, Rozhin P, Marchesan S (2021) Smart hydrogels meet carbon nanomaterials for new frontiers in medicine. Biomedicines 9(5):570. https://doi.org/10.3390/biomedicines9050570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kirubaharan J, Wang JW, Abbas SZ, Shah SB, Zhang YF, Wang JX, Yong YC (2023) Self-assembly of cell-embedding reduced graphene oxide/polypyrrole hydrogel as efficient anode for high-performance microbial fuel cell. Chemosphere 326:138413. https://doi.org/10.1016/j.chemosphere.2023.138413

    Article  CAS  PubMed  Google Scholar 

  22. Naguib M, Barsoum MW, Gogotsi Y (2021) Ten years of progress in the synthesis and development of MXenes. Adv Mater 33(39):2103393. https://doi.org/10.1002/adma.202103393

    Article  CAS  Google Scholar 

  23. Liu AM, Liang XY, Ren XF, Guan WX, Gao MF, Yang YN, Yang QY, Gao LG, Li YQ, Ma TL (2020) Recent progress in MXene-based materials: potential high-performance electrocatalysts. Adv Funct Mater 30(38):2003437. https://doi.org/10.1002/adfm.202003437

    Article  CAS  Google Scholar 

  24. Yu SJ, Tang H, Zhang D, Wang SQ, Qiu MQ, Song G, Fu D, Hu BW, Wang XK (2022) MXenes as emerging nanomaterials in water purification and environmental remediation. Sci Total Environ 811:152280. https://doi.org/10.1016/j.scitotenv.2021.152280

    Article  CAS  PubMed  Google Scholar 

  25. Wang YZ, Guo TC, Tian ZN, Bibi K, Zhang YZ, Alshareef HN (2022) MXenes for energy harvesting. Adv Mater 34(21):2108560. https://doi.org/10.1002/adma.202108560

    Article  CAS  Google Scholar 

  26. Jiang DM, Zhu CY, He Y, Xing CC, Xie K, Xu Y, Wang YQ (2022) Polyaniline-MXene-coated carbon cloth as an anode for microbial fuel cells. J Solid State Electrochem 26(11):2435–2443. https://doi.org/10.1007/s10008-022-05255-2

    Article  CAS  Google Scholar 

  27. Mancílio LBK, Ribeiro GA, Lopes EM, Kishi LT, Martins-Santana L, De Siqueira GMV, Andrade AR, Guazzaroni ME, Reginatto V (2020) Unusual microbial community and impact of iron and sulfate on microbial fuel cell ecology and performance. Curr Res Biotechnol 2:64–73. https://doi.org/10.1016/j.crbiot.2020.04.001

    Article  Google Scholar 

  28. Fan ZJ, Yan J, Zhi LJ, Zhang Q, Wei T, Feng J, Zhang ML, Qian WZ, Wei F (2010) A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv Mater 22:3723–3728. https://doi.org/10.1002/adma.201001029

    Article  CAS  PubMed  Google Scholar 

  29. Tan WW, Yang ZX, Feng Q, Su HR, Xu LJ, Liu CL (2023) Effect of NiCo2O4 and Ni-P modified anodes on the treatment of aging landfill leachate by microbial fuel cells. J Power Sources 577:233233. https://doi.org/10.1016/j.jpowsour.2023.233233

    Article  CAS  Google Scholar 

  30. Dave NV, Nerkar DM (2020) The influence of the oxidant on structural and morphological properties of conductive polypyrrole. Mater Today Proc 45(7):5939–5943. https://doi.org/10.1016/j.matpr.2020.09.104

    Article  CAS  Google Scholar 

  31. Sadidi M, Hajilary N, Abbasi F (2023) Fabrication of a new composite membrane consisting of MXene/PES/PEI for biofuel dehydration via pervaporation. Results Eng 18:101071. https://doi.org/10.1016/j.rineng.2023.101071

    Article  CAS  Google Scholar 

  32. Quan XC, Sun B, Xu HD (2015) Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells. Electrochim Acta 182:815–820. https://doi.org/10.1016/j.electacta.2015.09.157

    Article  CAS  Google Scholar 

  33. Liu D, Wang RW, Chang W, Zhang L, Peng BQ, Li HD, Liu SQ, Yan M, Guo CS (2018) Ti3C2 MXene as an excellent anode material for high-performance microbial fuel cells. J Mater Chem A 6(42):20887–20895. https://doi.org/10.1039/c8ta07305h

    Article  CAS  Google Scholar 

  34. Tahir K, Miran W, Jang J, Shahzad A, Moztahida M, Kim B, Lee DS (2020) A novel MXene-coated biocathode for enhanced microbial electrosynthesis performance. Chem Eng J 381:122687. https://doi.org/10.1016/j.cej.2019.122687

    Article  CAS  Google Scholar 

  35. Wang YP, Cheng XS, Liu K, Dai XF, Qi JT, Ma Z, Qiu YF, Liu SQ (2022) 3D hierarchical Co8FeS8-FeCo2O4/N-CNTs@ CF with an enhanced microorganisms-anode interface for improving microbial fuel cell performance. ACS Appl Mater Interfaces 14(31):35809–35821. https://doi.org/10.1021/acsami.2c09622

    Article  CAS  PubMed  Google Scholar 

  36. Li JX, Song B, Yao CC, Zhang ZH, Wang L, Zhang J (2022) S-Doped NiFe2O4 nanosheets regulated microbial community of suspension for constructing high electroactive consortia. Nanomaterials 12(9):1496. https://doi.org/10.3390/nano12091496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lucca BKM, Guiherme AR, Erica ML, Luciano TK, Leonardo MS, Guilherme MVS, A-dalgisa RA, Maria-Eugenia G, Valeria R (2020) Unusual microbial community and impact of iron and sulfate on microbial fuel cell ecology and performance. Curr Res Biotechnol 2:64–73. https://doi.org/10.1016/j.crbiot.2020.04.001

    Article  Google Scholar 

  38. Li C, Ding LL, Cui H, Zhang LB, Xu K, Ren HQ (2012) Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresour Technol 116:459–465. https://doi.org/10.1016/j.biortech.2012.03.115

    Article  CAS  PubMed  Google Scholar 

  39. Xu HT, Wang LG, Wen Q, Chen Y, Qi LJ, Huang JX, Tang ZS (2019) A 3D porous NCNT sponge anode modified with chitosan and polyaniline for high-performance microbial fuel cell. Bioelectrochemistry 129:144–153. https://doi.org/10.1016/j.bioelechem.2019.05.008

    Article  CAS  PubMed  Google Scholar 

  40. Wang JF, Song XS, Wang YH, Abayneh B, Li YH, Yan DH, Bai JH (2016) Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: establishment of electrochemically active bacteria community on anode. Bioresour Technol 221:358–365. https://doi.org/10.1016/j.biortech.2016.09.054

    Article  CAS  PubMed  Google Scholar 

  41. Xu H, Yang XL, Liu Y, Xia YG, Song HL (2023) Towards bio-utilization and energy recovery potential exploration of membrane foulant from membrane bioreactor by using microbial fuel cell-centered technology. Biosource Technol 387:129580. https://doi.org/10.1016/j.biortech.2023.129580

    Article  CAS  Google Scholar 

  42. Zhang DD, Wang Y, Zheng D, Guo P, Cheng W, Cui ZJ (2016) New combination of xyla-nolytic bacteria isolated from the lignocellulose degradation microbial consortium XDC-2 with enhanced xylanase activity. Bioresour Technol 221:686–690. https://doi.org/10.1016/j.biortech.2016.09.087

    Article  CAS  PubMed  Google Scholar 

  43. Uria N, Ferrera I, Mas J (2017) Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbial 17:208. https://doi.org/10.1186/s12866-017-1115-2

    Article  CAS  Google Scholar 

  44. Hu YD, Wang YH, Han X, Shan YW, Li F, Shi L (2021) Biofilm biology and engineering of Geobacter and Shewanella spp. for energy applications. Front Bioeng Biotechnol 9:786416. https://doi.org/10.3389/fbioe.2021.786416

    Article  PubMed  PubMed Central  Google Scholar 

  45. Borole AP, Reguera G, Ringeisen B, Wang ZW, Feng YJ, Kim BH (2011) Electroactive biofilms: current status and future research needs. Energy Environ Sci 4(12):4813–4834. https://doi.org/10.1039/c1ee02511b

    Article  CAS  Google Scholar 

  46. Katuri KP, Kamireddy S, Kavanagh P, Muhammad A, Conghaile PO, Kumar A, Saikaly PE, Leech D (2020) Electroactive biofilms on surface functionalized anodes: the anode respiring behavior of a novel electroactive bacterium. Desulfuromonas acetexigens Water Res 185:116284. https://doi.org/10.1016/j.watres.2020.116284

    Article  CAS  PubMed  Google Scholar 

  47. Yang N, Zhan GQ, Wu TT, Zhang YY, Jiang QR, Li DP, Xiang YY (2018) Effect of air-exposed biocathode on the performance of a Thauera-dominated membraneless single-chamber microbial fuel cell (SCMFC). J Environ Sci 66:216–224. https://doi.org/10.1016/j.jes.2017.05.013

    Article  CAS  Google Scholar 

  48. Korneel R, Willy V (2005) Verstraete microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–2988. https://doi.org/10.1016/j.tibtech.2005.04.008

    Article  CAS  Google Scholar 

  49. Vinay S, Kundu PP (2010) Biocatalysts in microbial fuel cells. Enzyme Microb Technol 47(5):179–188. https://doi.org/10.1016/j.enzmictec.2010.07.001

    Article  CAS  Google Scholar 

  50. Catarina MP, Leonor M, Carlos AS, Ricardo OL (2022) Molecular mechanisms of microbial extracellular electron transfer: the importance of multiheme cytochromes. Front Biosci 27(6):174. https://doi.org/10.31083/j.fbl2706174

    Article  CAS  Google Scholar 

  51. Zhao JT, Li F, Zhang XB, Chen T, Song H, Wang ZW (2021) Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms. Biotechnol Adv 53:107682. https://doi.org/10.1016/j.biotechadv.2020.107682

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The project greatly thanks the support provided by the National Natural Science Foundation of China (22278095).

Funding

This study was funded by National Natural Science Foundation of China, 22278095, 22278095, 22278095, 22278095.

Author information

Authors and Affiliations

Authors

Contributions

Cen Bi: investigation, methodology, formal analysis, data curation, visualization, writing—original draft, writing—review and editing; Ye Chen: supervision, conceptualization, funding acquisition, resources; Qing Wen: supervision, conceptualization, funding acquisition; Haitao Xu: writing—review and editing.

Corresponding authors

Correspondence to Qing Wen or Ye Chen.

Ethics declarations

Conflict of interest

The authors declare no competition interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, C., Wen, Q., Chen, Y. et al. Boosting power output in microbial fuel cell with sulfur-doped MXene/polypyrrole hydrogel anode for enhanced extracellular electron transfer process. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02137-5

Keywords

Navigation