Skip to main content
Log in

Enhancing electrochemical performance of lithium-rich manganese-based cathode materials through lithium sulfate coating

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material is carried out by heat treatment of the mixtures of Mn0.75Ni0.25C2O4 and (NH4)2SO4 absorbed on the surface of Li1.2Mn0.54Ni0.13Co0.13O2 material. The structural analysis by XRD, XPS, FTIR, and Raman spectroscopy demonstrates that Li2SO4 and metal oxides exist in the coating layer. The loading of coating layer and the calcination temperature play a crucial role in the initial Coulomb efficiency and cyclic stability of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Compared with the pristine and metal oxide-coated sample, modified Li1.2Mn0.54Ni0.13Co0.13O2 with Li2SO4 coating exhibits higher first discharge specific capacity (233 mAh g−1 at 0.1 A g−1) and longer cyclic stability (retention of 94.7% at 1 A g−1). The enhancement of the electrochemical performance can be attributed to the increased reversibility Mn3+/Mn4+ redox reaction and the reduced irreversible migration of transition metal ion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data and materials will be made available on request.

References

  1. Zhao S, Yan K, Zhang J, Sun B, Wang G (2021) Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion battery. Angew Chem Int Ed Engl 60(5):2208–2220

    Article  CAS  PubMed  Google Scholar 

  2. Ji X, Xia Q, Xu Y, Feng H, Wang P, Tan Q (2021) A review on progress of lithium-rich manganese-based cathodes for lithium ion batteries. J Power Sources 487:229362

    Article  CAS  Google Scholar 

  3. He W, Guo W, Wu H, Lin L, Liu Q, Han X, Xie Q, Liu P, Zheng H, Wang L, Yu X, Peng D-L (2021) Challenges and recent advances in high capacity li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 33:2005937

    Article  CAS  Google Scholar 

  4. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J-G (2016) Li- and Mn-rich cathode materials: challenges to commercialization. Adv Energy Mater 7:1601284

    Article  Google Scholar 

  5. Croy JR, Gallagher KG, Balasubramanian M, Chen Z, Ren Y, Kim D, Kang S-H, Dees DW, Thackeray MM (2013) Examining hysteresis in composite xLi2MnO3(1–x)LiMO2 cathode structures. J Phys Chem C 117(13):6525–6536

    Article  CAS  Google Scholar 

  6. Croy JR, Kim D, Balasubramanian M, Gallagher K, Kang S-H, Thackeray MM (2012) Countering the voltage decay in high capacity xLi2MnO3⋅(1–x)LiMO2 electrodes (M = Mn, Ni, Co) for Li+-ion batteries. J Electrochem Soc 159(6):A781–A790

    Article  CAS  Google Scholar 

  7. Cho S-W, Kim G-O, Ryu K-S (2012) Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries. Solid State Ion 206:84–90

    Article  CAS  Google Scholar 

  8. Lai J, Zhang J, Li Z, Xiao Y, Hua W, Wu Z, Chen Y, Zhong Y, Xiang W, Guo X (2020) Structural elucidation of the degradation mechanism of nickel-rich layered cathodes during high-voltage cycling. Chem Commun (Camb) 56(36):4886–4889

    Article  CAS  PubMed  Google Scholar 

  9. Qiu B, Zhang M, Lee SY, Liu H, Wynn TA, Wu L, Zhu Y, Wen W, Brown CM, Zhou D, Liu Z, Meng YS (2020) Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep Phys Sci 1:100028

    Article  Google Scholar 

  10. Fan J, Li G, Li B, Zhang D, Chen D, Li L (2019) Reconstructing the surface structure of li-rich cathodes for high-energy lithium-ion batteries. ACS Appl Mater Interfaces 11(22):19950–19958

    Article  CAS  PubMed  Google Scholar 

  11. Su Y, Yuan F, Chen L, Lu Y, Dong J, Fang Y, Chen S, Wu F (2020) Enhanced high-temperature performance of Li-rich layered oxide via surface heterophase coating. J Energy Chem 51:39–47

    Article  Google Scholar 

  12. Liu J, Wang J, Ni Y, Zhang Y, Luo J, Cheng F, Chen J (2019) Spinel/lithium-rich manganese oxide hybrid nanofibers as cathode materials for rechargeable lithium-ion batteries. Small Methods 3:1900350

    Article  CAS  Google Scholar 

  13. Shumei D, Dan T, Ping L, Huiqin L, Fenyan W, Zhang H (2022) Research progress and prospect in element doping of lithium-rich layered oxides as cathode materials for lithium-ion batteries. J Solid State Electrochem 27(1):1–23

    Article  Google Scholar 

  14. Qing R-P, Shi J-L, Xiao D-D, Zhang X-D, Yin Y-X, Zhai Y-B, Gu L, Guo Y-G (2016) Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv Energy Mater 6:1501914

    Article  Google Scholar 

  15. Yu Y, Yang Z, Zhong J, Liu Y, Li J, Wang X, Kang F (2020) A simple dual-ion doping method for stabilizing li-rich materials and suppressing voltage decay. ACS Appl Mater Interfaces 12(12):13996–14004

    Article  CAS  PubMed  Google Scholar 

  16. Chen D, Zheng F, Li L, Chen M, Zhong X, Li W, Lu L (2017) Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance. J Power Sources 341:147–155

    Article  CAS  Google Scholar 

  17. Liu J, Wu Z, Yu M, Hu H, Zhang Y, Zhang K, Du Z, Cheng F, Chen J (2022) Building homogenous Li2TiO3 coating layer on primary particles to stabilize Li-rich mn-based cathode materials. Small 18:2106337

    Article  CAS  Google Scholar 

  18. Li S, Fu X, Liang Y, Xie J, Wei Y, Yang L, Han Y, Li W, Cui X (2020) Spinel/layered heterostructured Li-rich Mn-based cathode material for high-capacity and high-rate Li-ion batteries. J Mater Sci: Mater Electron 31(7):5376–5384

    CAS  Google Scholar 

  19. Woo S-G, Han J-H, Kim KJ, Kim J-H, Yu J-S, Kim Y-J (2015) Surface modification by sulfated zirconia on high-capacity nickel-based cathode materials for Li-ion batteries. Electrochim Acta 153:115–121

    Article  CAS  Google Scholar 

  20. Dong S, Zhou Y, Hai C, Zeng J, Sun Y, Shen Y, Li X, Ren X, Sun C, Zhang G, Wu Z (2020) Understanding electrochemical performance improvement with Nb doping in lithium-rich manganese-based cathode materials. J Power Sources 462:228185

    Article  CAS  Google Scholar 

  21. Li L, Song BH, Chang YL, Xia H, Yang JR, Lee KS, Lu L (2015) Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J Power Sources 283:162–170

    Article  CAS  Google Scholar 

  22. Chen S, Xie Y, Chen W, Chen J, Yang W, Zou H, Lin Z (2019) enhanced electrochemical performance of Li-rich cathode materials by organic fluorine doping and spinel Li1+xNiyMn2–yO4 coating. ACS Sustain Chem Eng 8(1):121–128

    Article  Google Scholar 

  23. Sun Z, Xu L, Dong C, Zhang H, Zhang M, Ma Y, Liu Y, Li Z, Zhou Y, Han Y, Chen Y (2019) A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy 63:103887

    Article  CAS  Google Scholar 

  24. Chu Y, Hu Y, Lai A, Pan Q, Zheng F, Huang Y, Wang H, Li Q (2022) Enhancement structural stability of LiNi0.8Co0.1Mn0.1O2 via S2- doping combine with Li2SO4 coating co-modification. Electrochim Acta 409:139966

    Article  CAS  Google Scholar 

  25. Li Z, Cao S, Wu C, Li H, Chen J, Guo W, Chang B, Shen Y, Bai Y, Wang X (2022) A facile and high-effective oxygen defect engineering for improving electrochemical performance of lithium-rich manganese-based cathode materials. J Power Sources 536:231456

    Article  CAS  Google Scholar 

  26. Yang J, Xiao L, He W, Fan J, Chen Z, Ai X, Yang H, Cao Y (2016) Understanding voltage decay in lithium-rich manganese-based layered cathode materials by limiting cutoff voltage. ACS Appl Mater Interfaces 8(29):18867–18877

    Article  CAS  PubMed  Google Scholar 

  27. Kong F, Liang C, Longo RC, Yeon D-H, Zheng Y, Park J-H, Doo S-G, Cho K (2016) Conflicting roles of anion doping on the electrochemical performance of Li-ion battery cathode materials. Chem Mater 28(19):6942–6952

    Article  CAS  Google Scholar 

  28. Lv C, Peng Y, Yang J, Liu C, Duan X, Ma J, Wang T (2018) A free-standing Li1.2Mn0.54Ni0.13Co0.13O2/MWCNT framework for high-energy lithium-ion batteries. Inorg Chem Front 5(12):3053–3060

    Article  CAS  Google Scholar 

  29. Qiu B, Wang J, Xia Y, Liu Y, Qin L, Yao X, Liu Z (2013) Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. J Power Sources 240:530–535

    Article  CAS  Google Scholar 

  30. Yuan D, He W, Pei F, Wu F, Wu Y, Qian J, Cao Y, Ai X, Yang H (2013) Synthesis and electrochemical behaviors of layered Na067[Mn0.65Co0.2Ni0.15]O2 microflakes as a stable cathode material for sodium-ion batteries. J Mater Chem A 1(12):3895–3899

    Article  CAS  Google Scholar 

  31. Zhang SS, Chen J, Wang C (2019) Elemental sulfur as a cathode additive for enhanced rate capability of layered lithium transition metal oxides. J Electrochem Soc 166(4):A487–A492

    Article  CAS  Google Scholar 

  32. Ban L, Yin Y, Zhuang W, Lu H, Wang Z, Lu S (2015) Electrochemical performance improvement of Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material by sulfur incorporation. Electrochim Acta 180:218–226

    Article  CAS  Google Scholar 

  33. Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S (2014) Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett 14(6):3550–3555

    Article  CAS  PubMed  Google Scholar 

  34. Varghese S, Hariharan K (2017) Influence of quenching on the structural and conduction characteristics of lithium sulfate. Lonics 24(9):2591–2500

    Google Scholar 

  35. Kataoka R, Kojima T, Takeichi N (2018) Electrochemical property of Li-Mn cation disordered Li-rich Li2MnO3 with NaCl type structure. J Electrochem Soc 165(2):A291–A296

    Article  CAS  Google Scholar 

  36. Park SH, Ahn HS, Park GJ, Kim J, Lee YS (2008) Cycle mechanism and electrochemical properties of lithium manganese oxide prepared using different Mn sources. Mater Chem Phys 112(2):696–701

    Article  CAS  Google Scholar 

  37. Wang D, Kou R, Ren Y, Sun CJ, Zhao H, Zhang MJ, Li Y, Huq A, Ko JYP, Pan F, Sun YK, Yang Y, Amine K, Bai J, Chen Z, Wang F (2017) Synthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv Mater 29:1606715

    Article  Google Scholar 

  38. Lee E-S, Huq A, Chang H-Y, Manthiram A (2012) High-voltage, high-energy layered-spinel composite cathodes with superior cycle life for lithium-ion batteries. Chem Mater 24(3):600–612

    Article  CAS  Google Scholar 

  39. Luo Q, Kang J, Liao Z, Feng X, Zou H, Yang W, Pai C, Waiyin Sun R, Chen S (2022) Modification strategy for constructing Li gradient combined with spinel phase coating on Li-rich Mn-based materials. ACS Appl Energy Mater 5(4):4641–4650

    Article  CAS  Google Scholar 

  40. Du C, Zhang F, Ma C, Wu J, Tang Z, Zhang X, Qu D (2015) Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery. Ionics 22(2):209–218

    Article  Google Scholar 

Download references

Funding

This work was supported by Guangzhou University National Student Innovation Training Program (NO. 202211078207) and Guangzhou Science and Technology Planning Project (NO. 2024B03J1277).

Author information

Authors and Affiliations

Authors

Contributions

Sz C: conceptualization, methodology, validation, writing—review & editing. Y Z: investigation, data curation, software, writing—original draft. Wy Y: formal analysis, investigation. Sh Z: investigation. Ml B: investigation. Zj L: software. Hb Z: project administration. W Y: data curation.

Corresponding author

Correspondence to Shengzhou Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 586 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yang, W., Zhi, S. et al. Enhancing electrochemical performance of lithium-rich manganese-based cathode materials through lithium sulfate coating. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02133-9

Keywords

Navigation