Skip to main content
Log in

Efficient electrochemical oxidation of the biomass platform compound furfural on a Ni0.48Co0.36O0.16 electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The use of electrocatalytic technology to replace traditional harsh thermocatalysis in the process of biomass utilization has undoubtedly been an effective means to achieve green and sustainable development. The use of the environmentally friendly method of synthesizing furoic acid (FA) from the biomass platform compound furfural (FF) by electrooxidation was investigated. The surface of the Ni–Co oxide electrode with a Ni content of 0.48 (Ni0.48Co0.36O0.16) obtained by a simple electrodeposition method was covered by a layer of flower-like porous structure, while NiO, Co2+, and Co3+ coexisted. Moreover, the Ni0.48Co0.36O0.16 electrode exhibited 95.4% FA faraday efficiency and 99.6% selectivity with a substrate concentration of 20 mM at 1.0 V vs. Hg/HgO and 50 °C. In addition, a mechanism for electrooxidation of FF into FA over a Ni–Co oxide electrode was proposed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Yang D, Liu X, Zhao W, Yan Q, Song F, Wang T, Dai Y, Wan X, Zhou C, Yang Y (2021) A survey of recent progress on novel catalytic materials with precise crystalline structures for oxidation/hydrogenation of key biomass platform chemicals. EcoMat 3:e12159. https://doi.org/10.1002/eom2.12159

    Article  Google Scholar 

  2. Yang D, Ma C, Peng B, Xu J, He YC (2020) Synthesis of furoic acid from biomass via tandem pretreatment and biocatalysis. Ind Crop Prod 153:112580. https://doi.org/10.1016/j.indcrop.2020.112580

    Article  CAS  Google Scholar 

  3. Eseyin AE, Steele PH (2015) An overview of the applications of furfural and its derivatives. Int J Adv Chem 3:42–47. https://doi.org/10.14419/ijac.v3i2.5048

    Article  Google Scholar 

  4. Drault F, Snoussi Y, Paul S, Itabaiana JI, Wojcieszak R (2020) Recent advances in carboxylation of furoic acid into 2, 5-furandicarboxylic acid: pathways towards biobased polymers. Chemsuschem 13:5164–5172. https://doi.org/10.1002/cssc.202001393

    Article  CAS  PubMed  Google Scholar 

  5. Hronec M, Fulajtárová K, Vávra I, Soták T, Dobročka E, Mičušík M (2016) Carbon supported Pd–Cu catalysts for highly selective rearrangement of furfural to cyclopentanone. Appl Catal B Environ 181:210–219. https://doi.org/10.1016/j.apcatb.2015.07.046

    Article  CAS  Google Scholar 

  6. Taarning E, Nielsen IS, Egeblad K, Madsen R, Christensen CH (2008) Chemicals from renewables: aerobic oxidation of furfural and hydroxymethylfurfural over gold catalysts. Chemsuschem 1:75–78. https://doi.org/10.1002/cssc.200700033

    Article  CAS  PubMed  Google Scholar 

  7. Dixit RJ, Singh A, Ramani VK, Basu S (2021) Electrocatalytic hydrogenation of furfural paired with photoelectrochemical oxidation of water and furfural in batch and flow cells. React Chem Eng 6:2342–2353. https://doi.org/10.1039/D1RE00080B

    Article  CAS  Google Scholar 

  8. Li X, Cong L, Lin N, Tang C (2023) Efficient electrochemical upgradation strategies for the biomass derivative furfural. J Mater Chem A 11:23133–23147. https://doi.org/10.1039/D3TA03813K

    Article  CAS  Google Scholar 

  9. Li X, Cong L, Lin H, Liu F, Han F, Lin N (2022) Electrochemical conversion of furfural to furoic acid: a more stable, efficient and energy-saving system. Sci China Chem 65:2576–2587. https://doi.org/10.1007/s11426-022-1404-x

    Article  CAS  Google Scholar 

  10. Bharath G, Banat F (2021) High-grade biofuel synthesis from paired electrohydrogenation and electrooxidation of furfural using symmetric Ru/reduced graphene oxide electrodes. ACS Appl Mater Inter 13(21):24643–24653. https://doi.org/10.1021/acsami.1c02231

    Article  CAS  Google Scholar 

  11. Lu Y, Liu T, Dong CL, Huang YC, Li Y, Chen J, Wang S (2021) Tuning the selective adsorption site of biomass on Co3O4 by ir single atoms for electrosynthesis. Adv Mater 33:2007056. https://doi.org/10.1002/adma.202007056

    Article  CAS  Google Scholar 

  12. Zhang N, Zou Y, Tao L, Chen W, Zhou L, Liu Z, Wang S (2019) Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew Chem 131:16042–16050. https://doi.org/10.1002/ange.201908722

    Article  Google Scholar 

  13. Zeng Z, Wu S, Huang X, Wei Z (2023) Electrochemical oxidation of furfural on NiMoP/NF: boosting current density with enhanced adsorption of oxygenates. Small. https://doi.org/10.1002/smll.202305462

    Article  PubMed  Google Scholar 

  14. Almomani F, Bhosale R, Khraisheh M, Kumar A, Tawalbeh M (2020) Electrochemical oxidation of ammonia on nickel oxide nanoparticles. Int J Hydrogen Energ 45:10398–10408. https://doi.org/10.1016/j.ijhydene.2019.11.071

    Article  CAS  Google Scholar 

  15. Ming L, Wu XY, Wang SS, Wu W, Lu CZ (2022) Co2+-Doped porous Ni(OH)2 nanosheets electrode for selective electrocatalytic oxidation of methanol at high current densities. ChemElectroChem 9:e202200522. https://doi.org/10.1002/celc.202200522

    Article  CAS  Google Scholar 

  16. Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979. https://doi.org/10.1002/adma.201204128

    Article  CAS  PubMed  Google Scholar 

  17. Wu JB, Li ZG, Huang XH, Lin Y (2013) Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation. J Power Sources 224:1–5. https://doi.org/10.1016/jpowsour.2012.09.085

    Article  Google Scholar 

  18. Chen W, Xie C, Wang Y, Zou Y, Dong CL, Huang YC et al (2020) Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 6:2974–2993. https://doi.org/10.1016/j.chempr.2020.07.022

    Article  CAS  Google Scholar 

  19. Gao L, Bao Y, Gan S, Sun Z, Song Z, Han D, Li F, Niu L (2018) Hierarchical Ni–Co based transition metal oxide catalysts for electrochemical conversion of biomass into valuable chemicals. Chemsuschem 11:2547–2553. https://doi.org/10.1002/cssc.201800695

    Article  CAS  PubMed  Google Scholar 

  20. Lena T, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134:17253–17261. https://doi.org/10.1021/ja307507a

    Article  CAS  Google Scholar 

  21. Su Y, Zhu Y, Jiang H, Shen J, Yang X, Zou W, Chen J, Li C (2014) Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nanoscale 6:15080–15089. https://doi.org/10.1039/C4NR04357J

    Article  CAS  PubMed  Google Scholar 

  22. Liu X, Huang J, Wei X, Yuan C, Liu T, Cao D, Yin J, Wang G (2013) Preparation and electro- chemical performances of nanostructured CoxNi1–x(OH)2 composites for supercapacitors. JPS 240:338–343. https://doi.org/10.1016/j.jpowsour.2013.04.029

    Article  CAS  Google Scholar 

  23. Marco JF, Gancedo JR, Gracia M, Gautier JL, Ríos E, Berry FJ (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153:74–81. https://doi.org/10.1006/jssc.2000.8749

    Article  CAS  Google Scholar 

  24. Zhuang L, Ge L, Yang Y, Li M, Jia Y, Yao X, Zhu Z (2017) Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater 29:1606793. https://doi.org/10.1002/adma.201606793

    Article  CAS  Google Scholar 

  25. Chadderdon DJ, Xin L, Qi J, Qiu Y, Krishna P, More KL, Li W (2014) Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported au and pd bimetallic nanoparticles. Green Chem 16:3778–3786. https://doi.org/10.1039/C4GC00401A

    Article  CAS  Google Scholar 

  26. Zhang C, Berlinguette CP, Trudel S (2016) Water oxidation catalysis: an amorphous quaternary Ba-Sr-Co-Fe oxide as a promising electrocatalyst for the oxygen-evolution reaction. Chem Commun 52:1513–1516. https://doi.org/10.1039/C5CC09361A

    Article  CAS  Google Scholar 

  27. Vedharathinam V, Botte GG (2013) Direct evidence of the mechanism for the electro-oxidation of urea on a Ni(OH)2 catalyst in an alkaline medium. Electrochim Acta 108:660–665. https://doi.org/10.1016/j.electacta.2013.06.137

    Article  CAS  Google Scholar 

  28. Sha L, Ye K, Wang G, Shao J, Zhu K, Cheng K, Yan J, Wang G, Cao D (2019) Hierarchical NiCo2O4 nanowire array supported on ni foam for efficient urea electrooxidation in alkaline medium. JPS 412:265–271. https://doi.org/10.1016/j.jpowsour.2018.11.059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Projects of Colleges and University in Hebei Province (QN2023007). The authors thank the Facility for Electrode Preparation and Analysis at the Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., X. W., and P.W. wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yanru Zhang or Yongming Fan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1036.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X., Wu, P. et al. Efficient electrochemical oxidation of the biomass platform compound furfural on a Ni0.48Co0.36O0.16 electrode. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02122-y

Keywords

Navigation