Skip to main content
Log in

Study on kinetics of co-metabolic degradation of para-nitrophenol and phenol using microbial fuel cell

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The experimental results of the present study show that phenol had a certain inhibitory effect on its utilization by phenol-acclimatized activated sludge (PAAS), which was the inoculum for the microbial fuel cell (MFC) inoculation. In co-metabolic study, utilization of para-nitrophenol (PNP) at low concentrations (< 20 mg L−1) when used with phenol at a fixed concentration (250 mg L−1) favorably proceeded. The behavior was interpreted in terms of carbon catabolite repression (CCR), indicating phenol (250 mg L−1) positively affected consumption of PNP (< 20 mg L−1). The calculated values of degradation rate show the necessity of phenol presence in the system where phenol acted on the inoculum’s ability to withstand the inhibitory effect of PNP. The MFC functionality in electricity generation is also definable by considering CCR applicability and the results show that the negative effect of PNP was repressed by the presence of phenol. For instance, 20 mg L−1 PNP + 250 mg L−1 phenol yielded the highest power density (66.2 mW m−2) and the lowest internal resistance (189 Ω). The PAAS performance was characterized to evaluate cells’ capacity in utilizing inhibitory substrates, and several different models were used. The relevant kinetic parameters are described in terms of PAAS affinity toward the substrate (ks) and the microbe’s sensitivity in responding to the toxic substrate (ki). Luong and Aiba equations were chosen to describe MFC behavior when the PAAS utilized phenol as the sole substrate. While Haldane model was more capable of addressing co-metabolic degradation of PNP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets obtained in this study are available on request to the corresponding author.

References

  1. Delforno TP, Belgini DR, Hidalgo K, Centurion VB, Lacerda-Júnior GV, Duarte IC, Varesche M, Oliveira V (2020) Anaerobic reactor applied to laundry wastewater treatment: unveiling the microbial community by gene and genome-centric approaches. Int Biodeterior Biodegrad 149:104916. https://doi.org/10.1016/j.ibiod.2020.104916

    Article  CAS  Google Scholar 

  2. Sultana S, Choudhury MR, Bakr AR, Anwar N, Rahaman MS (2018) Effectiveness of electro-oxidation and electro-Fenton processes in removal of organic matter from high-strength brewery wastewater. J Appl Electrochem 48:519–528. https://doi.org/10.1007/s10800-018-1185-3

    Article  CAS  Google Scholar 

  3. Wang Y, Jiang X, Yang H, Li W, Mu Y, Shen J (2020) Degradation and mineralization of recalcitrant compounds in bioelectrochemical systems. In: Tiquia-Arashiro SM, Pant D (eds) Microbial electrochemical technologies. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  4. Arroyo P, Molinos-Senante M (2018) Selecting appropriate wastewater treatment technologies using a choosing-by-advantages approach. Sci Total Environ 625:819–827. https://doi.org/10.1016/j.scitotenv.2017.12.331

    Article  CAS  PubMed  Google Scholar 

  5. Mei X, Liu J, Guo Z, Li P, Bi S, Wang Y, Yang Y, Shen W, Wang Y, Xiao Y, Yang X, Zhou B, Liu H, Wu S (2019) Simultaneous p-nitrophenol and nitrogen removal in PNP wastewater treatment: comparison of two integrated membrane-aerated bioreactor systems. J Hazard Mater 363:99–108. https://doi.org/10.1016/j.jhazmat.2018.09.072

    Article  CAS  PubMed  Google Scholar 

  6. Komolafe O, Mrozik W, Dolfing J, Acharya K, Vassalle L, Mota CR, Davenport R (2021) Occurrence and removal of micropollutants in full-scale aerobic, anaerobic and facultative wastewater treatment plants in Brazil. J Environ Manag 287:112286. https://doi.org/10.1016/j.jenvman.2021.112286

    Article  CAS  Google Scholar 

  7. Moradi HG, Mahdavi MA, Gheshlaghi R, Dehghanian M (2023) Electrochemical evaluation of the effect of anode to cathode surface area ratio on power generation in air-cathode microbial fuel cells. J Appl Electrochem. https://doi.org/10.1007/s10800-023-01929-5

    Article  Google Scholar 

  8. Askari A, Vahabzadeh F, Mardanpour MM (2021) Quantitative determination of linear alkylbenzene sulfonate (LAS) concentration and simultaneous power generation in a microbial fuel cell-based biosensor. J Clean Prod 294:126349. https://doi.org/10.1016/j.jclepro.2021.126349

    Article  CAS  Google Scholar 

  9. Indriyani YA, Rusmana I, Anwar S, Djajakirana G, Santosa DA (2023) Bioelectrochemical assessment of a novel electrogenic Bacillus altitudinis AC11. 2 for electricity generation in microbial fuel cell (MFC) system. J Appl Electrochem. https://doi.org/10.1007/s10800-023-02020-9

    Article  Google Scholar 

  10. Baniasadi B, Vahabzadeh F (2021) The performance of a cyanobacterial biomass-based microbial fuel cell (MFC) inoculated with Shewanella oneidensis MR-1. J Environ Chem Eng 9:106338. https://doi.org/10.1016/j.jece.2021.106338

    Article  CAS  Google Scholar 

  11. Haynie TD (2008) Biological thermodynamics, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511802690

    Book  Google Scholar 

  12. Muloiwa M, Nyende-Byakika S, Dinka M (2020) Comparison of unstructured kinetic bacterial growth models. S Afr J Chem Eng 33:141–150. https://doi.org/10.1016/j.sajce.2020.07.006

    Article  Google Scholar 

  13. Wang Y, Meng F, Li H, Zhao S, Liu Q, Lin Y, Wang G, Wu J (2019) Biodegradation of phenol by Isochrysis galbana screened from eight species of marine microalgae: growth kinetic models, enzyme analysis and biodegradation pathway. J Appl Phycol 31:445–455. https://doi.org/10.1007/s10811-018-1517-z

    Article  CAS  Google Scholar 

  14. Chen YM, Lin TF, Huang C, Lin JC (2008) Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere 72:1671–1680. https://doi.org/10.1016/j.chemosphere.2008.05.035

    Article  CAS  PubMed  Google Scholar 

  15. Kamali M, Gameiro T, Costa ME, Capela I, Aminabhavi TM (2019) Enhanced biodegradation of phenolic wastewaters with acclimatized activated sludge—a kinetic study. Chem Eng J 378:122186. https://doi.org/10.1016/j.cej.2019.122186

    Article  CAS  Google Scholar 

  16. Sinha PK, Sinha A, Das M (2011) Microbial removal of phenol and p-chlorophenol from industrial waste water using Rhodococcus sp. RSP8 and its growth kinetic modeling. J Water Resource Prot 3:634. https://doi.org/10.4236/jwarp.2011.38073

    Article  CAS  Google Scholar 

  17. Liu X-p (2009) Kinetics of cometabolic degradation of 2-chlorophenol and phenol by Pseudomonas putida. Water Sci Eng 2:110–120. https://doi.org/10.3882/j.issn.1674-2370.2009.03.011

    Article  CAS  Google Scholar 

  18. Criddle CS (1993) The kinetics of cometabolism. Biotechnol Bioeng 41:1048–1056. https://doi.org/10.1002/bit.260411107

    Article  CAS  PubMed  Google Scholar 

  19. Maleki M, Motamedi M, Sedighi M, Zamir SM, Vahabzadeh F (2015) Experimental study and kinetic modeling of cometabolic degradation of phenol and p-nitrophenol by loofa-immobilized Ralstonia eutropha. Biotechnol Bioprocess Eng 20:124–130. https://doi.org/10.1007/s12257-014-0593-4

    Article  CAS  Google Scholar 

  20. Hazen TC (2010) Cometabolic bioremediation. In: Timmis NK (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg

    Google Scholar 

  21. Riaz M, Sharafat U, Zahid N, Ismail M, Park J, Ahmad B, Rashid N, Fahim M, Imran M, Tabassum A (2022) Synthesis of biogenic silver nanocatalyst and their antibacterial and organic pollutants reduction ability. ACS Omega 7:14723–14734. https://doi.org/10.1021/acsomega.1c07365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo J, Xu Y, Wang J, Zhang L, Jiang X, Shen J (2021) Coupled biodegradation of p-nitrophenol and p-aminophenol in bioelectrochemical system: mechanism and microbial functional diversity. J Environ Sci (China) 108:134–144. https://doi.org/10.1016/j.jes.2021.02.017

    Article  CAS  PubMed  Google Scholar 

  23. Bagheri M, Daneshvar R, Mogharei A, Vahabzadeh F (2020) Phenol-acclimated activated sludge and Ralstonia eutropha in a microbial fuel Cell for removal of olive oil from mill wastewater. Korean J Chem Eng 37:1233–1240. https://doi.org/10.1007/s11814-020-0538-x

    Article  CAS  Google Scholar 

  24. Mohan SV, Saravanan R, Raghavulu SV, Mohanakrishna G, Sarma P (2008) Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour Technol 99:596–603. https://doi.org/10.1016/j.biortech.2006.12.026

    Article  CAS  Google Scholar 

  25. Bridgewater L, Association APH, Association AWW, Federation WE (2012) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  26. Box J (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525. https://doi.org/10.1016/0043-1354(83)90111-2

    Article  CAS  Google Scholar 

  27. Caizán-Juanarena L, Servin-Balderas I, Chen X, Buisman CJ, ter Heijne A (2019) Electrochemical and microbiological characterization of single carbon granules in a multi-anode microbial fuel cell. J Power Sources 435:126514. https://doi.org/10.1016/j.jpowsour.2019.04.042

    Article  CAS  Google Scholar 

  28. Gu Y, Wei H-L, Balikhin MM (2018) Nonlinear predictive model selection and model averaging using information criteria. Systs Sci Control Eng 6:319–328. https://doi.org/10.1080/21642583.2018.1496042

    Article  Google Scholar 

  29. Zhu S, Wu H, Wei C, Zhou L, Xie J (2016) Contrasting microbial community composition and function perspective in sections of a full-scale coking wastewater treatment system. Appl Microbiol Biotechnol 100:949–960. https://doi.org/10.1007/s00253-015-7009-z

    Article  CAS  PubMed  Google Scholar 

  30. Karray F, Aloui F, Jemli M, Mhiri N, Loukil S, Bouhdida R, Mouha N, Sayadi S (2020) Pilot-scale petroleum refinery wastewaters treatment systems: Performance and microbial communities’ analysis. Process Saf Environ Prot 141:73–82. https://doi.org/10.1016/j.psep.2020.05.022

    Article  CAS  Google Scholar 

  31. Askari A, Vahabzadeh F, Mardanpour MM (2021) The identification and performance assessment of dominant bacterial species during linear alkylbenzene sulfonate (LAS)-biodegradation in a bioelectrochemical system. Bioprocess Biosyst Eng 44:2579–2590. https://doi.org/10.1007/s00449-021-02629-0

    Article  CAS  PubMed  Google Scholar 

  32. Tomei MC, Mosca Angelucci D, Clagnan E, Brusetti L (2021) Anaerobic biodegradation of phenol in wastewater treatment: achievements and limits. Appl Microbiol Biotechnol 105:2195–2224. https://doi.org/10.1007/s00253-021-11182-5

    Article  CAS  PubMed  Google Scholar 

  33. Phale PS, Malhotra H, Shah BA (2020) Degradation strategies and associated regulatory mechanisms/features for aromatic compound metabolism in bacteria. Adv Appl Microbiol 112:1–65. https://doi.org/10.1016/bs.aambs.2020.02.002

    Article  CAS  PubMed  Google Scholar 

  34. Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ (2012) Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 16:819–852. https://doi.org/10.1089/ars.2011.4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lai B, Yu S, Bernhardt PV, Rabaey K, Virdis B, Kromer JO (2016) Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnol Biofuels 9:39. https://doi.org/10.1186/s13068-016-0452-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lack A, Fuchs G (1992) Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism. J Bacteriol 174:3629–3636. https://doi.org/10.1128/jb.174.11.3629-3636.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choudhury P, Ray RN, Bandyopadhyay TK, Tiwari ON, Bhunia B (2021) Kinetics and performance evaluation of microbial fuel cell supplied with dairy wastewater with simultaneous power generation. Int J Hydrogen Energy 46:16815–16822. https://doi.org/10.1016/j.ijhydene.2020.08.024

    Article  CAS  Google Scholar 

  38. Jain S, Mungray AK (2021) Comparative study of different hydro-dynamic flow in microbial fuel cell stacks. Chin J Chem Eng 32:423–430. https://doi.org/10.1016/j.cjche.2020.10.016

    Article  CAS  Google Scholar 

  39. Qi X, Wang H, Gao X, Zhang L, Wang X, Xu P (2022) Efficient power recovery from aromatic compounds by a novel electroactive bacterium Pseudomonas putida B6–2 in microbial fuel cells. J Environ Chem Eng 10:108536. https://doi.org/10.1016/j.jece.2022.108536

    Article  CAS  Google Scholar 

  40. Sun G, de Sacadura RD, Thygesen A, Daniel G, Fernando D, Meyer AS (2016) Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens. Chin J Chem Eng 24:379–387. https://doi.org/10.1016/j.cjche.2015.11.002

    Article  CAS  Google Scholar 

  41. Liu X, Tremblay P-L, Malvankar NS, Nevin KP, Lovley DR, Vargas M (2014) A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on pili but is deficient in Fe (III) oxide reduction and current production. Appl Environ Microbiol 80:1219–1224. https://doi.org/10.1128/aem.02938-13

    Article  PubMed  PubMed Central  Google Scholar 

  42. Semenec L, Vergara IA, Laloo AE, Petrovski S, Bond PL, Franks AE (2020) Adaptive evolution of Geobacter sulfurreducens in coculture with Pseudomonas aeruginosa. MBio 11:e02875-e12819. https://doi.org/10.1128/mBio.02875-19

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bruckner R, Titgemeyer F (2002) Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148. https://doi.org/10.1111/j.1574-6968.2002.tb11123.x

    Article  CAS  PubMed  Google Scholar 

  44. Park H, McGill SL, Arnold AD, Carlson RP (2020) Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell Mol Life Sci 77:395–413. https://doi.org/10.1007/s00018-019-03377-x

    Article  CAS  PubMed  Google Scholar 

  45. Samuel MS, Sivaramakrishna A, Mehta A (2014) Bioremediation of p-Nitrophenol by Pseudomonas putida 1274 strain. J Environ Health Sci Eng 12:53. https://doi.org/10.1186/2052-336x-12-53

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li S, Tang Y, Tang L, Yan X, Xiao J, Xiang H, Wu Q, Yu R, Jin Y, Yu J, Xu N, Wu C, Wang S, Wang C, Chen Q (2022) Preliminary study on the effect of catabolite repression gene knockout on p-nitrophenol degradation in Pseudomonas putida DLL-E4. PLoS ONE 17:e0278503. https://doi.org/10.1371/journal.pone.0278503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin Y-H, Cheng Y-S (2020) Phenol degradation kinetics by free and immobilized Pseudomonas putida BCRC 14365 in batch and continuous-flow bioreactors. Processes 8:721. https://doi.org/10.3390/pr8060721

    Article  CAS  Google Scholar 

  48. Hussain A, Dubey SK, Kumar V (2015) Kinetic study for aerobic treatment of phenolic wastewater. Water Resour Ind 11:81–90. https://doi.org/10.1016/j.wri.2015.05.002

    Article  CAS  Google Scholar 

  49. Panigrahy N, Barik M, Sahoo NK (2020) Kinetics of phenol biodegradation by an indigenous Pseudomonas citronellolis NS1 isolated from coke oven wastewater. J Hazard Toxic Radioact Waste 24:04020019. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000502

    Article  CAS  Google Scholar 

  50. Duan Z (2011) Microbial degradation of phenol by activated sludge in a batch reactor. Environ Prot Eng 37:53–63

    CAS  Google Scholar 

  51. Liu Y, Liu Z-M (2019) Promoted activity of nitrogen-doped activated carbon as a highly efficient oxygen reduction catalyst in microbial fuel cells. J Appl Electrochem 49:119–133. https://doi.org/10.1007/s10800-018-1263-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A. Monazzami as IT coordinator at Chemical Engineering Department/AUT, for sincere assistance in the submission process. First author and F. Vahabzadeh express their gratitude for constructive comments made by the anonymous reviewers, which allow us to revise the manuscript properly.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

MPF and Dr FV wrote the main manuscript text. Dr LD helped to carry out the experimental tests. Dr AA helped to prepare Figures and make suggestion. All authors have read the manuscript and agreed for its submission.

Corresponding author

Correspondence to Farzaneh Vahabzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmirjafary Firuzabady, M., Askari, A., Davarpanah, L. et al. Study on kinetics of co-metabolic degradation of para-nitrophenol and phenol using microbial fuel cell. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02115-x

Keywords

Navigation