Skip to main content
Log in

Electrochemical determination of fenuron herbicide in environmental water samples by electro-reduced graphene oxide sensor

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Fenuron (FEN) is a herbicide that acts as a weed growing inhibitor in crops. Because of its persistence and good solubility in water, its presence in water bodies is emerging as a concern for aquatic species. Herein, we propose a simple development of an electrochemically reduced graphene oxide (rGO) sensor for the monitoring of FEN in environmental water samples. The rGO modified electrode was produced by cyclic voltammetry in a graphene oxide (GO) dispersion under constant stirring. The successfully synthesized rGO showed improved conductivity, electroactive surface area, and faster charge transfer compared to GO and glassy carbon (GC). Scanning electron microscopy images exhibited more frequent wrinkles in the morphology of the reduced form of the carbonaceous material, which is related to a defect-richer structure, as confirmed by Raman spectroscopy. The electrochemical determination of FEN showed the best performance in a 0.1 mol L−1 NaCl solution (pH = 2.5). Optimized parameters in differential pulse voltammetry of FEN resulted in two linear ranges (0.4–12.0 µmol L−1 and 20.0 to 50.0 µmol L−1) with high sensitivities of 6.83 and 1.90 µA µmol−1 L, respectively, and a low LOD of 0.34 µmol L−1. Stability, reproducibility, and interference tests proved the reliability of rGO in sensing FEN in real samples. Spiked tap and canal water samples returned recoveries close to 100%, exhibiting no statistically significant difference when compared to UV-Vis method by an average paired t-test, attesting the viability of the rGO modified electrode as a promising sensor of FEN in environmental water samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

6 References

  1. Hayat W, hua Liu Z, ping Wan Y, Zhang Y (2022) The analysis of efficiency of activated peroxymonosulfate for fenuron degradation in water. Environ Technol Innov 26:102352. https://doi.org/10.1016/J.ETI.2022.102352

    Article  CAS  Google Scholar 

  2. Mani V, Devasenathipathy R, Chen SM, Wu TY, Kohilarani K (2015) High-performance electrochemical amperometric sensors for the sensitive determination of phenyl urea herbicides diuron and fenuron. Ionics (Kiel) 21:2675–2683. https://doi.org/10.1007/S11581-015-1459-2/TABLES/3

    Article  CAS  Google Scholar 

  3. Hayat W, hua Liu Z, ping Wan Y, Du X, Huang S, Zhang Y (2022) The degradation of Fenuron in water by activated persulfate oxidation: an analysis of efficiency, influential parameters and potential applicability. Chem Eng J 445:136688. https://doi.org/10.1016/J.CEJ.2022.136688

    Article  CAS  Google Scholar 

  4. Trocewicz J (1996) Determination of herbicides in surface water by means of a supported liquid membrane technique and high-performance liquid chromatography. J Chromatogr A 725:121–127. https://doi.org/10.1016/0021-9673(95)01031-9

    Article  Google Scholar 

  5. Ng KT, Rapp-Wright H, Egli M, Hartmann A, Steele JC, Sosa-Hernández JE, Melchor-Martínez EM, Jacobs M, White B, Regan F, Parra-Saldivar R, Couchman L, Halden RU, Barron LP (2020) High-throughput multi-residue quantification of contaminants of emerging concern in wastewaters enabled using direct injection liquid chromatography-tandem mass spectrometry. J Hazard Mater 398:122933. https://doi.org/10.1016/J.JHAZMAT.2020.122933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diaw PA, Maroto A, Mbaye OMA, Gaye-Seye MD, Stephan L, Coly A, Deschamps L, Tine A, Aaron JJ, Giamarchi P (2013) Determination of phenylurea pesticides by direct laser photo-induced fluorescence. Talanta 116:569–574. https://doi.org/10.1016/J.TALANTA.2013.07.014

    Article  CAS  PubMed  Google Scholar 

  7. Hinsmann P, Arce L, Ríos A, Valcárcel M (2000) Determination of pesticides in waters by automatic on-line solid-phase extraction–capillary electrophoresis. J Chromatogr A 866:137–146. https://doi.org/10.1016/S0021-9673(99)01035-3

    Article  CAS  PubMed  Google Scholar 

  8. Niu X, Li X, Chen W, Li X, Weng W, Yin C, Dong R, Sun W, Li G (2018) Three-dimensional reduced graphene oxide aerogel modified electrode for the sensitive quercetin sensing and its application. Mater Sci Engineering: C 89:230–236. https://doi.org/10.1016/J.MSEC.2018.04.015

    Article  CAS  Google Scholar 

  9. Tanner EEL, Compton RG (2018) How can electrode surface modification benefit electroanalysis?  Electroanalysis 30:1336–1341. https://doi.org/10.1002/ELAN.201700807

    Article  CAS  Google Scholar 

  10. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036. https://doi.org/10.1002/ELAN.200900571

    Article  CAS  Google Scholar 

  11. Marahel F, Niknam L, Pournamdari E, Geramizadegan A (2022) Application of electrochemical sensor based on nanosheets G–C3N4/CPE by square wave anodic stripping voltammetry method to measure residual amounts of toxic bentazon in water samples. J Iran Chem Soc 19:3377–3385. https://doi.org/10.1007/s13738-022-02531-w

    Article  CAS  Google Scholar 

  12. Marahel F, Niknam L (2022) Application electrochemical sensor based on nanosheets G-C3N4/CPE by square-wave anodic stripping voltammetric for measure amounts of toxic tartrazinecolor residual in different drink and foodstuffs. J Environ Sci Heal B 57:489–496. https://doi.org/10.1080/03601234.2022.2064676

    Article  CAS  Google Scholar 

  13. Huang X, Yin Z, Wu S, Qi X, He Q, Zhang Q, Yan Q, Boey F, Zhang H (2011) Graphene-based materials: synthesis, characterization, properties, and applications. Small 7:1876–1902. https://doi.org/10.1002/SMLL.201002009

    Article  CAS  PubMed  Google Scholar 

  14. De Silva KKH, Huang HH, Joshi R, Yoshimura M (2020) Restoration of the graphitic structure by defect repair during the thermal reduction of graphene oxide. Carbon N Y 166:74–90. https://doi.org/10.1016/J.CARBON.2020.05.015

    Article  Google Scholar 

  15. Liu H, Sun B, Zhu P, Liu C, Zhang G, Wang D, Song X, Shi J, Yang Y, Lu J (2022) Preparation of three-dimensional porous graphene by hydrothermal and chemical reduction with ascorbic acid and its electrochemical properties. ChemistryOpen 11:e202200161. https://doi.org/10.1002/OPEN.202200161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Soni M, Kumar P, Kumar R, Sharma SK, Soni A (2017) Photo-catalytic reduction of oxygenated graphene dispersions for supercapacitor applications. J Phys D Appl Phys 50:124003. https://doi.org/10.1088/1361-6463/AA5C9F

    Article  ADS  Google Scholar 

  17. Ferrari I, Motta A, Zanoni R, Scaramuzzo FA, Amato F, Dalchiele EA, Marrani AG (2023) Understanding the nature of graphene oxide functional groups by modulation of the electrochemical reduction: a combined experimental and theoretical approach. Carbon N Y 203:29–38. https://doi.org/10.1016/J.CARBON.2022.11.052

    Article  CAS  Google Scholar 

  18. Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem Eng J 251:422–434. https://doi.org/10.1016/J.CEJ.2014.04.004

    Article  CAS  Google Scholar 

  19. González de la Huebra MJ, Hernández P, Ballesteros Y, Hernández L (2001) Determination of linuron in soil by stripping voltammetry with a carbon fiber microelectrode. Talanta 54:1077–1085. https://doi.org/10.1016/S0039-9140(01)00372-1

    Article  PubMed  Google Scholar 

  20. De Lima F, Gozzi F, Fiorucci AR, Cardoso CAL, Arruda GJ, Ferreira VS (2011) Determination of linuron in water and vegetable samples using stripping voltammetry with a carbon paste electrode. Talanta 83:1763–1768. https://doi.org/10.1016/J.TALANTA.2010.12.014

    Article  PubMed  Google Scholar 

  21. Buleandra M, Popa DE, David IG, Bacalum E, David V, Ciucu AA (2019) Electrochemical behavior study of some selected phenylurea herbicides at activated pencil graphite electrode. Electrooxidation of linuron and monolinuron. Microchem J 147:1109–1116. https://doi.org/10.1016/J.MICROC.2019.04.042

    Article  CAS  Google Scholar 

  22. Alves GF, de Faria LV, Lisboa TP, Matos MAC, Muñoz RAA, Matos RC (2022) Simple and fast batch injection analysis method for monitoring diuron herbicide residues in juice and tap water samples using reduced graphene oxide sensor. J Food Compos Anal 106:104284. https://doi.org/10.1016/J.JFCA.2021.104284

    Article  CAS  Google Scholar 

  23. Sousa KAP, de Morawski F, de Campos CEM, Parreira RLT, Piotrowski MJ, Nagurniak GR, Jost CL (2022) Electrochemical, theoretical, and analytical investigation of the phenylurea herbicide fluometuron at a glassy carbon electrode. Electrochim Acta 408:139945. https://doi.org/10.1016/J.ELECTACTA.2022.139945

    Article  CAS  Google Scholar 

  24. Abraham DA, Vasantha VS (2020) Hollow polypyrrole composite synthesis for detection of Trace-Level toxic herbicide. ACS Omega 5:21458–21467. https://doi.org/10.1021/ACSOMEGA.0C01870/ASSET.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bhalla V, Sharma P, Pandey SK, Suri CR (2012) Impedimetric label-free immunodetection of phenylurea class of herbicides. Sens Actuators B Chem. https://doi.org/10.1016/J.SNB.2012.06.058

    Article  Google Scholar 

  26. Pedrotti JJ, Angnes L, Gutz IGR (1996) Miniaturized reference electrodes with microporous polymer junctions. Electroanalysis 8:673–675. https://doi.org/10.1002/ELAN.1140080713

    Article  Google Scholar 

  27. Chen Y, Zhang X, Yu P, Ma Y (2009) Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers. Chem Commun. https://doi.org/10.1039/B907723E

    Article  Google Scholar 

  28. Zhang X, Zhang DC, Chen Y, Sun XZ, Ma YW (2012) Electrochemical reduction of graphene oxide films: preparation, characterization and their electrochemical properties. Chin Sci Bull 57:3045–3050. https://doi.org/10.1007/S11434-012-5256-2/METRICS

    Article  CAS  Google Scholar 

  29. Quezada-Renteria JA, Ania CO, Chazaro-Ruiz LF, Rangel-Mendez JR (2019) Influence of protons on reduction degree and defect formation in electrochemically reduced graphene oxide. Carbon N Y 149:722–732. https://doi.org/10.1016/J.CARBON.2019.04.109

    Article  CAS  Google Scholar 

  30. Tong H, Zhu J, Chen J, Han Y, Yang S, Ding B, Zhang X (2013) Electrochemical reduction of graphene oxide and its electrochemical capacitive performance. J Solid State Electrochem 17:2857–2863. https://doi.org/10.1007/S10008-013-2195-Z/FIGURES/12

    Article  CAS  Google Scholar 

  31. Botella R, Piñeiro-García A, Semetey V, Lefèvre G (2022) Polarized ATR-IR spectroscopy for the identification of material structure: the case of graphene oxide. Mater Lett 320:132352. https://doi.org/10.1016/J.MATLET.2022.132352

    Article  CAS  Google Scholar 

  32. Kauppila J, Kunnas P, Damlin P, Viinikanoja A, Kvarnström C (2013) Electrochemical reduction of graphene oxide films in aqueous and organic solutions. Electrochim Acta 89:84–89. https://doi.org/10.1016/J.ELECTACTA.2012.10.153

    Article  CAS  Google Scholar 

  33. Karačić D, Gutić SJ, Vasić B, Mirsky VM, Skorodumova NV, Mentus SV, Pašti IA (2022) Electrochemical reduction of thin graphene-oxide films in aqueous solutions—restoration of conductivity. Electrochim Acta 410:140046. https://doi.org/10.1016/J.ELECTACTA.2022.140046

    Article  Google Scholar 

  34. Labunov VA, Tabulina LV, Komissarov IV, Grapov DV, Prudnikova EL, Shaman YP, Basaev SA, Pavlov AA (2017) Features of the reduction of graphene from graphene oxide. Russ J Phys Chem A 91:1088–1092. https://doi.org/10.1134/S0036024417060140/METRICS

    Article  CAS  Google Scholar 

  35. Casallas Caicedo FM, Vera López E, Agarwal A, Drozd V, Durygin A, Franco Hernandez A, Wang C (2020) Synthesis of graphene oxide from graphite by ball milling. Diam Relat Mater 109:108064. https://doi.org/10.1016/J.DIAMOND.2020.108064

    Article  CAS  ADS  Google Scholar 

  36. Jorio A, Ferreira EHM, Cançado LG, Achete CA, Capaz RB, Jorio A, Ferreira EHM, Cançado LG, Achete CA, Capaz RB (2011) Measuring disorder in graphene with raman spectroscopy, physics and applications of graphene—experiments. Phys Status Solidi b. https://doi.org/10.5772/15374

    Article  Google Scholar 

  37. Kartick B, Srivastava SK, Srivastava I (2013) Green synthesis of graphene. J Nanosci Nanotechnol 13:4320–4324. https://doi.org/10.1166/JNN.2013.7461

    Article  CAS  PubMed  Google Scholar 

  38. Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon N Y 50:3210–3228. https://doi.org/10.1016/J.CARBON.2011.11.010

    Article  CAS  Google Scholar 

  39. Dogan GM, Arbag H, Koyuncu DDE (2022) Effect of graphene-based additives on mechanical strength and microstructure of gypsum plaster. Mater Today Commun 33:104555. https://doi.org/10.1016/J.MTCOMM.2022.104555

    Article  CAS  Google Scholar 

  40. Kim MS, Woo JM, Geum DM, Rani JR, Jang JH (2014) Effect of copper surface pre-treatment on the properties of CVD grown graphene. AIP Adv 4:127107. https://doi.org/10.1063/1.4903369/240341

    Article  ADS  Google Scholar 

  41. Gong Y, Li D, Fu Q, Pan C (2015) Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog Nat Sci: Mater Int 25:379–385. https://doi.org/10.1016/J.PNSC.2015.10.004

    Article  CAS  Google Scholar 

  42. Zhang D, Ouyang X, Li L, Dai B, Zhang Y (2016) Real-time amperometric monitoring of cellular hydrogen peroxide based on electrodeposited reduced graphene oxide incorporating adsorption of electroactive methylene blue hybrid composites. J Electroanal Chem 780:60–67. https://doi.org/10.1016/J.JELECHEM.2016.09.005

    Article  CAS  Google Scholar 

  43. Li B, Pan G, Avent ND, Lowry RB, Madgett TE, Waines PL (2015) Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Biosens Bioelectron 72:313–319. https://doi.org/10.1016/J.BIOS.2015.05.034

    Article  CAS  PubMed  Google Scholar 

  44. Randviir EP (2018) A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochim Acta 286:179–186. https://doi.org/10.1016/J.ELECTACTA.2018.08.021

    Article  CAS  Google Scholar 

  45. Shahabi Z, Zare-Shahabadi V, Sayyahi S, Burromand-Piroz J (2022) Novel CuO/polymethylenedisulfide nanocomposite for high performance electrocatalytic determination of hydrochlorothiazide in real samples. J Porous Mat 29:1123–1135. https://doi.org/10.1007/s10934-022-01236-y

    Article  CAS  Google Scholar 

  46. Mary Nancy TE, Anitha V, Kumary (2014) Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Electrochim Acta 133:233–240. https://doi.org/10.1016/j.electacta.2014.04.027

    Article  CAS  Google Scholar 

  47. Mani V, Periasamy AP, Chen SM (2012) Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem Commun 17:75–78. https://doi.org/10.1016/J.ELECOM.2012.02.009

    Article  CAS  Google Scholar 

  48. Cheemalapati S, Palanisamy S, Chen SM (2013) Electrochemical determination of isoniazid at electrochemically reduced graphene oxide modified electrode.  Int J Electrochem Sci 8:3953–3962

    Article  CAS  Google Scholar 

  49. Macounova K, Klima J, Bernard C, Degrand C (1998) Ultrasound-assisted anodic oxidation of diuron. J Electroanal Chem 457:141–147. https://doi.org/10.1016/S0022-0728(98)00310-6

    Article  CAS  Google Scholar 

  50. Saisahas K, Soleh A, Promsuwan K, Phonchai A, Mohamed Sadiq NS, Teoh WK, Chang KH, Lim Abdullah AF, Limbut W (2021) A portable electrochemical sensor for detection of the veterinary drug xylazine in beverage samples. J Pharm Biomed Anal 198:113958. https://doi.org/10.1016/J.JPBA.2021.113958

    Article  CAS  PubMed  Google Scholar 

  51. Maleki N, Safavi A, Farjami E, Tajabadi F (2008) Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Anal Chim Acta 611:151–155. https://doi.org/10.1016/J.ACA.2008.01.075

    Article  CAS  PubMed  Google Scholar 

  52. Fischer J, Dejmkova H, Barek J (2011) Electrochemistry of pesticides and its analytical applications. Curr Org Chem 15:2923–2935. https://doi.org/10.2174/138527211798357146

    Article  CAS  Google Scholar 

  53. Temgoua RCT, Bussy U, Alvarez-Dorta D, Galland N, Hémez J, Tonlé IK, Boujtita M (2020) Simulation of the environmental degradation of diuron (herbicide) using electrochemistry coupled to high resolution mass spectrometry. Electrochim Acta 352:136485. https://doi.org/10.1016/J.ELECTACTA.2020.136485

    Article  CAS  Google Scholar 

  54. Bukkitgar SD, Shetti NP, Reddy KR, Saleh TA, Aminabhavi TM (2020) Ultrasonication and electrochemically-assisted synthesis of reduced graphene oxide nanosheets for electrochemical sensor applications. FlatChem 23:100183. https://doi.org/10.1016/J.FLATC.2020.100183

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CAPES (financial code 001), FAPEMIG (APQ-01207-17), FINEP, and CNPq for financial support. We also thank RELAM multiuser laboratory from the Institute of Chemistry at the Federal University of Uberlândia for providing the equipment and technical support for experiments involving scanning electron microscopy and EDS. This work was partially supported by the Brazilian Institute of Science and Technology (INCT) in Carbon Nanomaterials.

Author information

Authors and Affiliations

Authors

Contributions

PB: wrote the main manuscript text and prepared figures. CB and EN: performed the supervision and edition. All authors reviewed the manuscript.

Corresponding author

Correspondence to Pedro H. S. Borges.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 373.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, P.H.S., Breslin, C.B. & Nossol, E. Electrochemical determination of fenuron herbicide in environmental water samples by electro-reduced graphene oxide sensor. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02073-4

Keywords

Navigation