Skip to main content
Log in

Manganese oxide@nanocellulose modified poster paper-based electrode as a novel electrochemical sensor for sensitive determination of paraquat

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor for paraquat determination was facilely developed using nanocomposites of cellulose incorporated with manganese oxide (MnO2@cellulose) modified screen-printed carbon electrode (SPCE). In this study, SPCE was fabricated on a low-cost poster paper, and nanocellulose from sugarcane bagasse was employed to enhance the electrode’s surface area and improve the dispersion of MnO2. The MnO2@cellulose modified poster-SPCE exhibited a high electrochemical response toward paraquat. Various influencing factors, including differential pulse voltammetric parameters and accumulation time, were systematically explored. Under the optimal conditions, the cathodic peak current was linearly proportional to paraquat concentration in a range of 2 to 200 µM, featuring a low detection limit of 1 µM. The proposed sensor offers cost-effectiveness and can be readily prepared via a simple procedure. Moreover, this method exhibits excellent reproducibility, high selectivity, and a short analysis time. The portable electrochemical sensor was able to determine paraquat in water samples with acceptable recoveries from 95.45 to 109.20%, indicating that the sensor based on MnO2@cellulose/SPCE is reliable for paraquat quantification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rajaram R, Neelakantan L (2023) Recent advances in estimation of paraquat using various analytical techniques: a review. Res Chem 5:100703

    CAS  Google Scholar 

  2. Laghrib F, Bakasse M, Lahrich S, El MA, Mhammedi (2020) Electrochemical sensors for improved detection of paraquat in food samples: a review. Mater Sci Eng C 107:110349

    Article  CAS  Google Scholar 

  3. Siangproh W, Somboonsuk T, Chailapakul O, Songsrirote K (2017) Novel colorimetric assay for paraquat detection on-silica bead using negatively charged silver nanoparticles. Talanta 174:448–453

    Article  CAS  PubMed  Google Scholar 

  4. Cancino J, Soto K, Tapia J, Muñoz-Quezada MT, Lucero B, Contreras C, Moreno J (2023) Occupational exposure to pesticides and symptoms of depression in agricultural workers. A systematic review. Environ Res 231:116190

    Article  CAS  PubMed  Google Scholar 

  5. Guo H, Li L, Gao L (2023) Paraquat and Diquat: recent updates on their pretreatment and analysis methods since 2010 in biological samples. Molecules 28(2):684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smith LL (1985) Paraquat toxicity. Phil Trans R Soc Lond B 311:647–657

    Article  CAS  Google Scholar 

  7. Raghu K, Mahesh V, Sasidhar P, Reddy PR, Venkataramaniah V, Agrawal A (2013) Paraquat poisoning: a case report and review of literature. J Family Commun Med 20:198–200

    Article  Google Scholar 

  8. Kim JW, Kim DS (2019) Paraquat: toxicology and impacts of its ban on human health and agriculture. Weed Sci 68:208–213

    Article  Google Scholar 

  9. Chuntib P, Jakmunee J (2015) Simple flow injection colorimetric system for determination of paraquat in natural water. Talanta 144:432–438

    Article  CAS  PubMed  Google Scholar 

  10. YaÑez-SedeÑo P, Polo LM, Diez (1986) Spectrophotometric determination of paraquat with BiI – 4 in the presence of gum arabic. Talanta 33:745–747

    Article  PubMed  Google Scholar 

  11. Rai MK, Das JV, Gupta VK (1997) A sensitive determination of paraquat by spectrophotometry. Talanta 45:343–348

    Article  CAS  PubMed  Google Scholar 

  12. Sha O, Cui B, Chen X, Liu H, Yao J, Zhu Y (2020) Separation and determination of paraquat and diquat in human plasma and urine by magnetic dispersive solid phase extraction coupled with high-performance liquid chromatography. J Anal Methods Chem 2020:7359582

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hao C, Zhao X, Morse D, Yang P, Taguchi V (2013) Morra optimized liquid chromatography tandem mass spectrometry approach for the determination of diquat and paraquat herbicides. J Chromatogr A 1304:169–176

    Article  CAS  PubMed  Google Scholar 

  14. Gao L, Liu J, Wang C, Liu G, Niu X, Shu C, Zhu J (2014) Fast determination of paraquat in plasma and urine samples by solid-phase microextraction and gas chromatography–mass spectrometry. J Chromatogr B 944:136–140

    Article  CAS  Google Scholar 

  15. Ghanbary E, Asiabani Z, Hosseini N, Kiaie SH, Kaki S, Ghasempour H, Babakhanian A (2020) The development of a new modified graphite pencil electrode for quantitative detection of gibberellic acid (GA3) herbal hormone. Microchem J 157:105005

    Article  CAS  Google Scholar 

  16. Abolghasemi MM, Ghorbani-Cheghamarania A, Babakhanian A (2017) A novel electrochemical sensing platform based on Pt/PPy/Eosin-Y for the determination of cadmium. New J Chem 41:11335–11341

    Article  CAS  Google Scholar 

  17. Traiwatcharanon P, Siriwatcharapiboon W, Jongprateep O, Wongchoosuk C (2022) Electrochemical paraquat sensor based on lead oxide nanoparticles. RSC Adv 12:16079–16092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Upan J, Lerdsri J, Soongsong J, Mool-Am-Kha P, Sridara T, Reanpang P, Jakmunee J (2022) A novel and portable electrochemical sensor for 5-hydroxymethylfurfural detection using silver microdendrite electrodeposited paper-based electrode. Analyst 147:2170–2179

    Article  CAS  PubMed  Google Scholar 

  19. Veeramani V, Dinesh B, Chen SM, Saraswathi R (2016) Electrochemical synthesis of Au–MnO2 on electrophoretically prepared graphene nanocomposite for high performance supercapacitor and biosensor applications. J Mater Chem A 4:3304–3315

    Article  CAS  Google Scholar 

  20. Mahmoudian MR, Alias Y, Basirun WJ, Woi PM, Sookhakian M (2014) Facile preparation of MnO2 nanotubes/reduced graphene oxide nanocomposite for electrochemical sensing of hydrogen peroxide. Sens Actuators B 201:526–534

    Article  CAS  Google Scholar 

  21. Wu ZL, Li CK, Yu JG, Chen XQ (2017) MnO2/reduced graphene oxide nanoribbons: facile hydrothermal preparation and their application in amperometric detection of hydrogen peroxide. Sens Actuators B 239:544–552

    Article  CAS  Google Scholar 

  22. Ye Y, Sun X, Zhang Y, Han X, Sun X (2022) A novel cell-based electrochemical biosensor based on MnO2 catalysis for antioxidant activity evaluation of anthocyanins. Biosens Bioelectron 202:113990

    Article  CAS  PubMed  Google Scholar 

  23. Dontsova EA, Zeifman YS, Budashov IA, Eremenko AV, Kalnov SL, Kurochkin IN (2011) Screen-printed carbon electrode for choline based on MnO2 nanoparticles and choline oxidase/polyelectrolyte layers. Sens Actuators B 159:261–270

    Article  CAS  Google Scholar 

  24. Thongsomboon W, Srihanam YBP, Srihanam P (2023) Valorization of cellulose-based materials from agricultural Waste: comparison between sugarcane bagasse and rice straw. Polymers 15:3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Azmin SNHM, binti NA, Hayat M, Nor MSM (2020) Development and characterization of food packaging bioplastic film from cocoa pod husk cellulose incorporated with sugarcane bagasse fibre. J Bioresour Bioprod 5:248–255

    Article  CAS  Google Scholar 

  26. Farooq A, Patoary MK, Zhang M, Mussana H, Li M, Naeem MA, Mushtaq M, Farooq A, Liu L (2020) Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials. Int J Biol Macromol 154:1050–1073

    Article  CAS  PubMed  Google Scholar 

  27. Fatema N, Ceballos RM, Fan C (2022) Modifications of cellulose-based biomaterials for biomedical applications. Front Bioeng Biotechnol 10:993711

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiang Z, Ngai T (2022) Recent advances in chemically modified cellulose and its derivatives for food packaging applications: a review. Polymers (Basel) 14(8):1533

    Article  CAS  PubMed  Google Scholar 

  29. Asgari S, Sun L, Lin J, Weng Z, Wu G, Zhang Y, Lin M (2020) Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Mikrochim Acta 187:390

    Article  CAS  PubMed  Google Scholar 

  30. Zhou L, Ke K, Yang MB, Yang W (2021) Recent progress on chemical modification of cellulose for high mechanical-performance poly(lactic acid)/cellulose composite: a review. Compos Commun 23:100548

    Article  Google Scholar 

  31. Balasubramanian P, Balamurugan TST, Chen SM, Chen TW, Tseng TW, Lou BS (2018) A simple architecture of cellulose microfiber/reduced graphene oxide nanocomposite for the electrochemical determination of nitrobenzene in sewage water. Cellulose 25:2381–2391

    Article  CAS  Google Scholar 

  32. Khan AAP (2020) Electrocatalytic behavior and determination of amitriptyline drug with MWCNT@celllulose composite modified glassy carbon electrode. Materials (Basel) 13(7):1708

    Article  CAS  PubMed  Google Scholar 

  33. Sofla MRK, Brow RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci Nanosci Nanotechnol 7(3):035004

    Article  Google Scholar 

  34. Wang Y, Zhang X, He X, Zhang W, Zhang X, Lu C (2014) In situ synthesis of MnO2 coated cellulose nanofibers hybrid for effective removal of methylene blue. Carbohydr Polym 110:302–308

    Article  CAS  PubMed  Google Scholar 

  35. Tagne RFT, Ndifor-Angwagor NG, Temgoua RCT, Tchuifon DRT, Vintila T, Ngueabouo AS, Anagho SG (2021) Development of an electroanalytical method using activated rice husk-derived carbon for the detection of a paraquat herbicide. Carbon Trends 4:100060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research project was financially supported by Faculty of Science, Mahasarakham University. We also thank the Veterinary Research and Development Center (Upper Northern Region) Department of Livestock Development, Faculty of Science and Technology, Thammasat University, Lampang, and Chiang Mai University, for the partial support.

Author information

Authors and Affiliations

Authors

Contributions

WT: methodology, writing—original draft, editing. JS: experiments, formal analysis. JJ: supervision, writing—review & editing. JR: writing—original draft, supervision. PR: experiments, writing-original draft. JU: conceptualization, methodology, supervision, writing—original draft, editing.

Corresponding author

Correspondence to Jantima Upan.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thongsomboon, W., Sonjai, J., Jakmunee, J. et al. Manganese oxide@nanocellulose modified poster paper-based electrode as a novel electrochemical sensor for sensitive determination of paraquat. J Appl Electrochem 54, 1085–1094 (2024). https://doi.org/10.1007/s10800-023-02023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02023-6

Keywords

Navigation