Skip to main content
Log in

Bioelectrochemical assessment of a novel electrogenic Bacillus altitudinis AC11.2 for electricity generation in microbial fuel cell (MFC) system

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrogen is a microbial group that plays an important role as anodic biocatalyst of microbial fuel cells (MFCs), one of the most extensively studied microbial-based technologies for bioelectricity generation. The aims of this research were to isolate potential electrogenic bacteria from aquaculture pond sediments and conduct a thorough evaluation on the MFCs’ electricity production and efficiency parameters. A total of 18 electrogenic bacteria having various electrochemical abilities was successfully isolated using thioglycollate solid media enriched with Fe3+. Five isolates (namely KCf1, KCf2, KCf4, KCf10, and KCf14) were non-pathogenic electrogens and able to produce relatively stable and high open-circuit voltage values (690–810 mV) on glucose-fed MFCs. Further evaluations on electricity production in close-circuit mode (fixed resistor technique, polarization tests, and analysis of power overshoot phenomenon) and efficiency parameters (Coulombic and energy efficiencies) showed that KCf2, molecular identified as Bacillus altitudinis AC11.2, was the most potential MFC biocatalyst among all isolates. It produced an MPP value of 67.11 mW m−2, current density of 333.03 mA m−2, and Coulombic and energy efficiency of 53.86% and 63.27%, respectively. Efforts to increase the MFC’s electrical output have been done by assembling four reactors in series and parallel circuits, obtaining the maximum total voltage of 1.6–2.0 V (for series configuration). This potential output was higher than a portable zinc–carbon battery (1.5 V) and a Ni–Cd battery (1.2 V). However, the voltage reversal suffered in series circuits was another challenge in the development of MFCs for bioelectricity production, since the existence of this phenomenon due to biological factors (microbial metabolism dynamics) are not easy to be controlled.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

7. References

  1. Lewis K (1966) Symposium on bioelectrochemistry of microorganisms. IV. Biochemical fuel cells. Bacteriol Rev 30(1):101–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim B, An J, Fapyane D, Chang IS (2015) Bioelectronic platforms for optimal bio-anode of bio-electrochemical systems: from nano- to macro scopes. Bioresour Technol 195:2–13. https://doi.org/10.1016/j.biortech.2015.06.061

    Article  CAS  PubMed  Google Scholar 

  3. Rahimnejad M, Adhami A, Darvari S, Zirepour A, Oh S (2015) Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Engineering. Alex Eng J 54:745

    Article  Google Scholar 

  4. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518. https://doi.org/10.1016/j.tim.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  5. Adekunle A, Gomez Vidales A, Woodward L, Tartakovsky B (2021) Microbial fuel cell soft sensor for real-time toxicity detection and monitoring. Environ Sci Pollut Res 28(10):12792. https://doi.org/10.1007/s11356-020-11245-6

    Article  CAS  Google Scholar 

  6. Kubota K, Watanabe T, Maki H, Kanaya G, Higashi H, Syutsubo K (2019) Operation of sediment microbial fuel cells in Tokyo Bay, an extremely eutrophicated coastal sea. Bioresour Technol Rep 6:39–45. https://doi.org/10.1016/j.biteb.2019.02.001

    Article  Google Scholar 

  7. Rodrigo J, Boltes K, Esteve-Nuñez A (2014) Microbial-electrochemical bioremediation and detoxification of dibenzothiophene-polluted soil. Chemosphere 101:61–65. https://doi.org/10.1016/j.chemosphere.2013.11.060

    Article  CAS  PubMed  Google Scholar 

  8. Jothinathan D (2018) Microbial Desalination cells: a Boon for Future generations. In: Sivasankar V, Mylsamy P, Omine K (eds) Microbial Fuel Cell Technology for Bioelectricity. Springer, New York, pp 241–249. https://doi.org/10.1007/978-3-319-92904-0_12

    Chapter  Google Scholar 

  9. González-Pabón MJ, Cardeña R, Cortón E, Buitrón G (2021) Hydrogen production in two-chamber MEC using a low-cost and biodegradable poly(vinyl) alcohol/chitosan membrane. Bioresour Technol 319:124168. https://doi.org/10.1016/j.biortech.2020.124168

    Article  CAS  PubMed  Google Scholar 

  10. Khudzari JM, Kurian J, Tartakovsky B, Raghavan GSV (2018) Bibliometric analysis of global research trends on microbial fuel cells using Scopus database. Biochem Eng J 136:51–60. https://doi.org/10.1016/j.bej.2018.05.002

    Article  CAS  Google Scholar 

  11. Gul H, Raza W, Lee J, Azam M, Ashraf M, Kim K-H (2021) Progress in microbial fuel cell technology for wastewater treatment and energy harvesting. Chemosphere 281:130828. https://doi.org/10.1016/j.chemosphere.2021.130828

    Article  CAS  PubMed  Google Scholar 

  12. Logan BE, Wallack MJ, Kim K-Y, He W, Feng Y, Saikaly PE (2015) Assessment of Microbial Fuel Cell configurations and Power densities. Environ Sci Technol Lett 2(8):206–214. https://doi.org/10.1021/acs.estlett.5b00180

    Article  CAS  Google Scholar 

  13. An J, Nam J, Kim B, Lee H-S, Kim BH, Chang IS (2015) Performance variation according to anode-embedded orientation in a sediment microbial fuel cell employing a chessboard-like hundred-piece anode. Bioresour Technol 190:175–181. https://doi.org/10.1016/j.biortech.2015.04.071

    Article  CAS  PubMed  Google Scholar 

  14. Wu S, Li H, Zhou X, Liang P, Zhang X, Jiang Y, Huang X (2016) A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res 98:396–403. https://doi.org/10.1016/j.watres.2016.04.043

    Article  CAS  PubMed  Google Scholar 

  15. Chen S, Patil SA, Brown RK, Schröder U (2019) Strategies for optimizing the power output of microbial fuel cells: transitioning from fundamental studies to practical implementation. Appl Energy 233–234:15–28. https://doi.org/10.1016/j.apenergy.2018.10.015

    Article  Google Scholar 

  16. Oh SE, Logan BE (2007) Voltage reversal during microbial fuel cell stack operation. J Power Sources 167(1):11–17. https://doi.org/10.1016/j.jpowsour.2007.02.016

    Article  CAS  Google Scholar 

  17. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru A-E, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: The microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59:1–100. https://doi.org/10.1016/B978-0-12-387661-4.00004-5

    Article  CAS  PubMed  Google Scholar 

  18. Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8(2):513–519. https://doi.org/10.1039/C4EE03359K

    Article  CAS  Google Scholar 

  19. Shi L, Dong H, Reguera G, Beyenal H, Lu A, Liu J, Yu H-Q, Fredrickson JK (2016) Extracellular electron transfer mechanisms between microorganisms and minerals. Nat Rev Microbiol 14(10):651–662. https://doi.org/10.1038/nrmicro.2016.93

    Article  CAS  PubMed  Google Scholar 

  20. Wang N, Chen Z, Li H-B, Su J-Q, Zhao F, Zhu Y-G (2015) Bacterial community composition at anodes of microbial fuel cells for paddy soils: the effects of soil properties. J Soils Sediments 15(4):926–936. https://doi.org/10.1007/s11368-014-1056-4

    Article  CAS  Google Scholar 

  21. Yee MO, Snoeyenbos-West OL, Thamdrup B, Ottosen LDM, Rotaru A-E (2019) Extracellular electron uptake by two Methanosarcina species. Front Energy Res 7(29):1–10. https://doi.org/10.3389/fenrg.2019.00029

    Article  Google Scholar 

  22. Zuo Y, Xing D, Regan JM, Logan BE (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi yz-1 by using a u-tube microbial fuel cell. Appl Environ Microbiol 74(10):3130–3137. https://doi.org/10.1128/AEM.02732-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma C, Zhuang L, Zhou SG, Yang GQ, Yuan Y, Xu RX (2012) Alkaline extracellular reduction: isolation and characterization of an alkaliphilic and halotolerant bacterium, Bacillus pseudofirmus MC02. J Appl Microbiol 112(5):883–891. https://doi.org/10.1111/j.1365-2672.2012.05276.x

    Article  CAS  PubMed  Google Scholar 

  24. Ueoka N, Kouzuma A, Watanabe K (2018) Electrode plate-culture methods for colony isolation of exoelectrogens from anode microbiomes. Bioelectrochemistry 124:1–6. https://doi.org/10.1016/j.bioelechem.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  25. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and fe(III)-reducing bacterium phylogenetically related to clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7(6):297–306. https://doi.org/10.1006/anae.2001.0399

    Article  CAS  Google Scholar 

  26. Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J (2003) A novel electrochemically active and fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEM Microbiol Lett 223(1):129–134. https://doi.org/10.1016/S0378-1097(03)00354-9

    Article  CAS  Google Scholar 

  27. Xing D, Zuo Y, Cheng S, Regan JM, Logan BE (2008) Electricity generation by rhodopseudomonas palustris DX-1. Environ Sci Technol 42(11):4146–4151. https://doi.org/10.1021/es800312v

    Article  CAS  PubMed  Google Scholar 

  28. Chung K, Okabe S (2009) Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Appl Microbiol Biotechnol 83(5):965–977. https://doi.org/10.1007/s00253-009-1990-z

    Article  CAS  PubMed  Google Scholar 

  29. Badalamenti JP, Summers ZM, Chan CH, Gralnick JA, Bond DR (2016) Isolation and genomic characterization of ‘Desulfuromonas soudanensis wtl’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Front Microbiol 7:913. https://doi.org/10.3389/fmicb.2016.00913

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rowe AR, Yoshimura M, LaRowe DE, Bird LJ, Amend JP, Hashimoto K, Nealson KH, Okamoto A (2017) In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring. Environ Microbiol 19(6):2272–2285. https://doi.org/10.1111/1462-2920.13723

    Article  CAS  PubMed  Google Scholar 

  31. Indriyani YA, Rusmana I, Anwar S, Djajakirana G, Santosa DA (2023) Harvesting bioelectricity from Microbial Fuel cells (MFCs) powered by electroactive microbes. J Lampung Agric Eng 12(3):583–596

    Google Scholar 

  32. Indriyani YA, Rustami E, Rusmana I, Anwar S, Djajakirana G, Santosa DA (2023) Bioelectricity production of microbial fuel cells (MFCs) and the simultaneous monitoring using developed multi-channels Arduino UNO-based data logging system. J Appl Electrochem. https://doi.org/10.1007/s10800-023-01989-7

    Article  Google Scholar 

  33. Min B, Román ÓB, Angelidaki I (2008) Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotecnol Lett 30(7):1213–1218. https://doi.org/10.1007/s10529-008-9687-4

    Article  CAS  Google Scholar 

  34. Guerrero-Rangel N, Garza JAR-dl, Garza-Garcia Y, Rios-Gonzalez LJ, Sosa-Santillan GJ, Garza-Rodriguez IMdl, Martinez-Amador SY, Rodriguez-Garza MM, Rodriguez-Martinez J (2010) Comparative study of three cathodic electron acceptors on the performance of medatiorless microbial fuel cell. Int J Electr Power Eng 4(1):27–31. https://doi.org/10.3923/ijepe.2010.27.31

    Article  Google Scholar 

  35. Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39(2):658–662. https://doi.org/10.1021/es048927c

    Article  CAS  PubMed  Google Scholar 

  36. Schaad NW, Jones JB, Chun W (2001) Laboratory guide for the identification of plant pathogenic bacteria, 3rd edn. American Phytopathological society (APS press), Saint Paul

    Google Scholar 

  37. Buxton R (2005) Blood agar plates and hemolysis protocols. Am Soc Microbiol 15:1–9

    Google Scholar 

  38. Zhang H, Fu Y, Zhou C, Liu S, Zhao M, Chen T, Zai X (2018) A novel anode modified by 1,5-dihydroxyanthraquinone/multiwalled carbon nanotubes composite in marine sediment microbial fuel cell and its electrochemical performance. Int J Energy Res 42(7):2574–2582. https://doi.org/10.1002/er.4034

    Article  CAS  Google Scholar 

  39. Logan BE (2008) Microbial fuel cells. Wiley, Hoboken

    Google Scholar 

  40. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192. https://doi.org/10.1021/es0605016

    Article  CAS  PubMed  Google Scholar 

  41. Barberio C, Pagliai L, Cavalieri D, Fani R (2001) Biodiversity and horizontal gene transfer in culturable bacteria isolated from activated sludge enriched in nonylphenol ethoxylates. Res Microbiol 152(1):105–112. https://doi.org/10.1016/S0923-2508(00)01173-6

    Article  CAS  PubMed  Google Scholar 

  42. Cello FD, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63(11):4485–4493. https://doi.org/10.1128/aem.63.11.4485-4493.1997

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brewer JH (1940) Clear liquid mediums for the aerobic cultivation of anaerobes. JAMA 115(8):598–600. https://doi.org/10.1001/jama.1940.72810340001009

    Article  Google Scholar 

  44. Vera HD (1944) A comparative study of materials suitable for the cultivation of clostridia. J Bacteriol 47(1):59–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thomson R, Miller J (2003) Specimen collection, transport, and processing: bacteriology. In: Murray P, Baron E, Jorgensen J, Pfaller M, Yolken R (eds) Manual of clinical microbiology, 8 edn. American Society for Microbiology, Washington DC

    Google Scholar 

  46. EP European Pharmacopoeia (2015) 9th Edition. Chapter 2.6.1. Sterility. 04/2011:20601. European Treaty Series No. 50. Strasbourg: Council of Europe

  47. USP United States Pharmacopeia (2018) Chapter <71> Sterility Tests. US Pharmacopeial Convention. Rockville, MD

  48. FDA (2001) Food and Drug Administration. Bacteriological analytical manual. AOAC International, Gaithersburg

    Google Scholar 

  49. Horwitz W, Latimer GW (2007) Official methods of analysis of AOAC International, 18th edn. AOAC International, Gaithersburg

    Google Scholar 

  50. FR (1992) Federal Register. Fed Regist 21:640.2.17

  51. NCCLS (2004) Performance standards for antimicrobial susceptibility testing, 14th informational supplement. NCCLS document M100-S14. National Committee for Clinical Laboratory Standards, Wayne

    Google Scholar 

  52. Erensoy A, Mulayim S, Orhan A, Çek N, Tuna A, Ak N (2022) The system design of the peat-based microbial fuel cell as a new renewable energy source: the potential and limitations. AEJ 61(11):8743–8750. https://doi.org/10.1016/j.aej.2022.02.020

    Article  Google Scholar 

  53. Jafary T, Ghoreyshi AA, Najafpour GD, Fatemi S, Rahimnejad M (2012) Investigation on performance of microbial fuel cells based on carbon sources and kinetic models. Int J Energy Res 37(12):1539–1549. https://doi.org/10.1002/er.2994

    Article  CAS  Google Scholar 

  54. Nasrabadi AM, Moghimi M (2023) Experimental investigation of factors affecting the micro microbial fuel cells’ main outputs. J Power Sources 564:232871. https://doi.org/10.1016/j.jpowsour.2023.232871

    Article  CAS  Google Scholar 

  55. Chandrasekhar K, Mohan SV (2012) Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: Effect of substrate concentration. Bioresour Technol 110:517–525. https://doi.org/10.1016/j.biortech.2012.01.128

    Article  CAS  PubMed  Google Scholar 

  56. Chandrasekhar K, Mohan SV (2014) Bio-electrohydrolysis as a pretreatment strategy to catabolize complex food waste in closed circuitry: function of electron flux to enhance acidogenic biohydrogen production. Int J Hydrogen Energy 39(22):11411–11422. https://doi.org/10.1016/j.ijhydene.2014.05.035

    Article  CAS  Google Scholar 

  57. Chandrasekhar K, Mohan SV (2014) Induced catabolic bio-electrohydrolysis of complex food waste by regulating external resistance for enhancing acidogenic biohydrogen production. Bioresour Technol 165:372–382. https://doi.org/10.1016/j.biortech.2014.02.073

    Article  CAS  PubMed  Google Scholar 

  58. An J, Lee H-S (2014) Occurrence and implications of voltage reversal in stacked microbial fuel cells. Chemsuschem 7(6):1689–1695. https://doi.org/10.1002/cssc.201300949

    Article  CAS  PubMed  Google Scholar 

  59. Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082. https://doi.org/10.1021/es050986i

    Article  CAS  PubMed  Google Scholar 

  60. Harnisch F, Schröder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39(11):4433–4448. https://doi.org/10.1039/C003068F

    Article  CAS  PubMed  Google Scholar 

  61. Sun M, Zhai L-F, Li W-W, Yu H-Q (2016) Harvest and utilization of chemical energy in wastes by microbial fuel cells. Chem Soc Rev 45(10):2847–2870. https://doi.org/10.1039/C5CS00903K

    Article  CAS  PubMed  Google Scholar 

  62. Yasri N, Roberts EPL, Gunasekaran S (2019) The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Rep 5:1116–1136. https://doi.org/10.1016/j.egyr.2019.08.007

    Article  Google Scholar 

  63. Lee HS, Parameswaran P, Kato-Marcus A, Torres CI, Rittmann BE (2008) Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res 42(6–7):1501–1510. https://doi.org/10.1016/j.watres.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  64. Min B, Logan BE (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol 38(21):5809–5814. https://doi.org/10.1021/es0491026

    Article  CAS  PubMed  Google Scholar 

  65. Logan BE (2007) Microbial Fuel Cells. Wiley, Hoboken

    Book  Google Scholar 

  66. Puig S, Serra M, Coma M, Cabré M, Balaguer MD, Colprim J (2010) Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour Technol 101(24):9594–9599. https://doi.org/10.1016/j.biortech.2010.07.082

    Article  CAS  PubMed  Google Scholar 

  67. Luo J, Li M, Zhou M, Hu Y (2015) Characterization of a novel strain phylogenetically related to Kocuria rhizophila and its chemical modification to improve performance of microbial fuel cells. Biosens & Bioelectron 69:113–120. https://doi.org/10.1016/j.bios.2015.02.025

    Article  CAS  Google Scholar 

  68. Zhao F, Slade RCT, Varcoe JR (2009) Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chem Soc Rev 38(7):1926–1939. https://doi.org/10.1039/B819866G

    Article  CAS  PubMed  Google Scholar 

  69. Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180(2):683–694. https://doi.org/10.1016/j.jpowsour.2008.02.074

    Article  CAS  Google Scholar 

  70. Watson VJ, Logan BE (2011) Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochem Commun 13(1):54–56. https://doi.org/10.1016/j.elecom.2010.11.011

    Article  CAS  Google Scholar 

  71. Peng X, Yu H, Yu H, Wang X (2013) Lack of anodic capacitance causes power overshoot in microbial fuel cells. Bioresour Technol 138:353–358. https://doi.org/10.1016/j.biortech.2013.03.187

    Article  CAS  PubMed  Google Scholar 

  72. Kim B, An J, Chang IS (2017) Elimination of power overshoot at bioanode through assistance current in microbial fuel cells. ChemSusChem 10(3):612–617. https://doi.org/10.1002/cssc.201601412

    Article  CAS  PubMed  Google Scholar 

  73. Winfield J, Ieropoulos I, Greenman J, Dennis J (2011) The overshoot phenomenon as a function of internal resistance in microbial fuel cells. Bioelectrochemistry 81(1):22–27. https://doi.org/10.1016/j.bioelechem.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  74. Ieropoulos I, Winfield J, Greenman J (2010) Effects of flow-rate, inoculum and time on the internal resistance of microbial fuel cells. Bioresour Technol 101(10):3520–3525. https://doi.org/10.1016/j.biortech.2009.12.108

    Article  CAS  PubMed  Google Scholar 

  75. Liu L, Lee C-Y, Ho K-C, Nien P-C, Su A, Wang A, Ren N, Lee D-J (2011) Occurrence of power overshoot for two-chambered MFC at nearly steady-state operation. Int J Hydrogen Energy 36(21):13896–13899. https://doi.org/10.1016/j.ijhydene.2011.02.130

    Article  CAS  Google Scholar 

  76. Hong Y, Call DF, Werner CM, Logan BE (2011) Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosens & Bioelectron 28(1):71–76. https://doi.org/10.1016/j.bios.2011.06.045

    Article  CAS  Google Scholar 

  77. Zhu X, Tokash JC, Hong Y, Logan BE (2013) Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry 90:30–35. https://doi.org/10.1016/j.bioelechem.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  78. Nien P-C, Lee C-Y, Ho K-C, Adav SS, Liu L, Wang A, Ren N, Lee D-J (2011) Power overshoot in two-chambered microbial fuel cell (MFC). Bioresour Technol 102(7):4742–4746. https://doi.org/10.1016/j.biortech.2010.12.015

    Article  CAS  PubMed  Google Scholar 

  79. Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3(5):899–919

    Article  CAS  Google Scholar 

  80. Parkash A (2016) Microbial fuel cells: A source of bioenergy. J Microb Biochem Technol 8:247. https://doi.org/10.4172/1948-5948.1000293

    Article  CAS  Google Scholar 

  81. Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotecnol Lett 25(18):1531–1535. https://doi.org/10.1023/A:1025484009367

    Article  CAS  Google Scholar 

  82. Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525. https://doi.org/10.1016/j.biortech.2009.02.065

    Article  CAS  PubMed  Google Scholar 

  83. Kim K-Y, Chae K-J, Choi M-J, Ajayi FF, Jang A, Kim C-W, Kim IS (2011) Enhanced coulombic efficiency in glucose-fed microbial fuel cells by reducing metabolite electron losses using dual-anode electrodes. Bioresour Technol 102(5):4144–4149. https://doi.org/10.1016/j.biortech.2010.12.036

    Article  CAS  PubMed  Google Scholar 

  84. Marcus AK, Torres CI, Rittmann BE (2007) Conduction-based modeling of the biofilm anode of a microbial fuel cell. Biotechnol Bioeng 98(6):1171–1182. https://doi.org/10.1002/bit.21533

    Article  CAS  Google Scholar 

  85. Wanner O, Ebert HJ, Morgenroth E, Noguera D, Picioreanu C, Rittmann BE, Van Loosdrecht MCM (2006) Mathematical modeling of biofilms. Adv Dent Res. https://doi.org/10.2166/9781780402482

    Article  Google Scholar 

  86. Bard A, Faulkner L (1980) Electrochemical methods: fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  87. Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394. https://doi.org/10.1021/es0525511

    Article  CAS  PubMed  Google Scholar 

  88. Erbay C, Carreon-Bautista S, Sanchez-Sinencio E, Han A (2014) High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells. Environ Sci Technol 48(23):13992–13999. https://doi.org/10.1021/es501426j

    Article  CAS  PubMed  Google Scholar 

  89. Nguyen C-L, Tartakovsky B, Woodward L (2019) Harvesting energy from multiple microbial fuel cells with a high-conversion efficiency power management system. ACS Omega 4(21):18978–18986. https://doi.org/10.1021/acsomega.9b01854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hsu L, Chadwick B, Kagan J, Thacher R, Wotawa-Bergen A, Richter K (2013) Scale up considerations for sediment microbial fuel cells. RSC Adv 3(36):15947–15954. https://doi.org/10.1039/C3RA43180K

    Article  CAS  Google Scholar 

  91. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671. https://doi.org/10.1007/s00253-009-2378-9

    Article  CAS  PubMed  Google Scholar 

  92. Khaled F, Ondel O, Allard B (2015) Optimal energy harvesting from serially connected microbial fuel cells. IEEE Trans Industr Electron 62(6):3508–3515. https://doi.org/10.1109/TIE.2014.2371437

    Article  Google Scholar 

  93. Leicester DD, Settle S, McCann CM, Heidrich ES (2023) Investigating variability in microbial fuel cells. Appl Environ Microbiol Rep 89(3):e02181–e02122. https://doi.org/10.1128/aem.02181-22

    Article  CAS  Google Scholar 

  94. Koch C, Huber KJ, Bunk B, Overmann J, Harnisch F (2019) Trophic networks improve the performance of microbial anodes treating wastewater. Npj Biofilms and Microbiomes 5(1):27. https://doi.org/10.1038/s41522-019-0100-y

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li J, Li H, Fu Q, Liao Q, Zhu X, Kobayashi H, Ye D (2017) Voltage reversal causes bioanode corrosion in microbial fuel cell stacks. Int J Hydrogen Energy 42(45):27649–27656. https://doi.org/10.1016/j.ijhydene.2017.05.221

    Article  CAS  Google Scholar 

  96. Liu Z, Liu J, Zhang S, Su Z (2008) A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane. Biotecnol Lett 30(6):1017–1023. https://doi.org/10.1007/s10529-008-9658-9

    Article  CAS  Google Scholar 

  97. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shivaji S, Chaturvedi P, Suresh K, Reddy GSN, Dutt CBS, Wainwright M, Narlikar JV, Bhargava PM (2006) Bacillus aerius sp. nov., Bacillus aerophilus sp. nov., Bacillus stratosphericus sp. nov. and Bacillus altitudinis sp. nov., isolated from cryogenic tubes used for collecting air samples from high altitudes. Int J Syst Evolut Microbiol 56(7):1465–1473. https://doi.org/10.1099/ijs.0.64029-0

    Article  CAS  Google Scholar 

  99. Kumar EV, Srijana M, Kumar KK, Harikrishna N, Reddy G (2011) A novel serine alkaline protease from Bacillus altitudinis GVC11 and its application as a dehairing agent. Bioprocess Biosyst Eng 34(4):403–409. https://doi.org/10.1007/s00449-010-0483-x

    Article  CAS  Google Scholar 

  100. Mao S, Lu Z, Zhang C, Lu F, Bie X (2013) Purification, characterization, and Heterologous expression of a thermostable β-1,3 – 1,4-Glucanase from Bacillus altitudinis YC-9. Appl Biochem Biotech 169(3):960–975. https://doi.org/10.1007/s12010-012-0064-3

    Article  CAS  Google Scholar 

  101. Sunar K, Dey P, Chakraborty U, Chakraborty B (2015) Biocontrol efficacy and plant growth promoting activity of Bacillus altitudinis isolated from Darjeeling hills, India. J Basic Microbiol 55(1):91–104. https://doi.org/10.1002/jobm.201300227

    Article  CAS  PubMed  Google Scholar 

  102. Budiharjo A, Jeong H, Wulandari D, Lee S, Ryu C-M (2017) Complete genome sequence of Bacillus altitudinis p-10, a potential bioprotectant against xanthomonas oryzae pv. Oryzae, isolated from rice rhizosphere in java, Indonesia. Genome Announcements 5(48):e01388–e01317. https://doi.org/10.1128/genomeA.01388-17

    Article  PubMed  PubMed Central  Google Scholar 

  103. Halder U, Banerjee A, Chaudhry V, Varshney RK, Mantri S, Bandopadhyay R (2017) Draft genome report of Bacillus altitudinis sorb11, isolated from the Indian sector of the Southern Ocean. Genome Announcements 5(23):e00339–e00317. https://doi.org/10.1128/genomeA.00339-17

    Article  PubMed  PubMed Central  Google Scholar 

  104. Shafi S, Kamili AN, Shah MA, Bandh SA, Dar R (2017) Dynamics of bacterial class Bacilli in the deepest valley lake of Kashmir-the Manasbal Lake. Microb Pathog 104:78–83. https://doi.org/10.1016/j.micpath.2017.01.018

    Article  CAS  PubMed  Google Scholar 

  105. Vettath VK, Junqueira ACM, Uchida A, Purbojati RW, Houghton JNI, Chénard C, Drautz-Moses DI, Wong A, Kolundžija S, Clare ME, Lau KJX, Gaultier NE, Heinle CE, Premkrishnan BNV, Gusareva ES, Acerbi E, Yang L, Schuster SC (2017) Complete genome sequence of Bacillus altitudinis type strain SGAir0031 isolated from tropical air collected in Singapore. Genome Announcements 5(45):e01260–e01217. https://doi.org/10.1128/genomeA.01260-17

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sreeja S, Jeba M, Sharmila J, Steffi T, Immanuel G, Palavesam A (2013) Optimization of cellulase production by Bacillus altitudinis APS MSU and Bacillus licheniformis APS2 MSU, gut isolates of fish Etroplus suratensis. Int J Advancements Res Technol 2(4):401–406

    Google Scholar 

  107. Sukmawati S, Hardianti F, Sipriyadi S, Aziz IR (2019) Identification of pathogenic bacteria on the salted fish Lutjanus Vivanus in Sorong City of West Papua. Malaysian J Microbiol 15(3):237–244

    CAS  Google Scholar 

  108. Dar MA, Dhole NP, Xie R, Pawar KD, Ullah K, Rahi P, Pandit RS, Sun J (2021) Valorization potential of a novel bacterial strain, bacillus altitudinis rsp75, towards lignocellulose bioconversion: an assessment of symbiotic bacteria from the stored grain pest, tribolium castaneum. Microorganisms 9(9):1952. https://doi.org/10.3390/microorganisms9091952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lu X, Zhou D, Chen X, Zhang J, Huang H, Wei L (2017) Isolation and characterization of Bacillus altitudinis JSCX-1 as a new potential biocontrol agent against Phytophthora sojae in soybean [Glycine max (L.) Merr]. Plant Soil 416(1):53–66. https://doi.org/10.1007/s11104-017-3195-z

    Article  CAS  Google Scholar 

  110. Harikrishna N, Mahalakshmi S, Kiran Kumar K, Reddy G (2017) Fish scales as potential substrate for production of alkaline protease and amino acid rich aqua hydrolyzate by Bacillus altitudinis GVC11. Indian J Microbiol 57(3):339–343. https://doi.org/10.1007/s12088-017-0664-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Thite VS, Nerurkar AS, Baxi NN (2020) Optimization of concurrent production of xylanolytic and pectinolytic enzymes by Bacillus safensis M35 and Bacillus altitudinis J208 using agro-industrial biomass through response surface methodology. Sci Rep 10(1):3824. https://doi.org/10.1038/s41598-020-60760-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Abdollahi P, Ghane M, Babaeekhou L (2021) Isolation and characterization of thermophilic bacteria from gavmesh goli hot spring in sabalan geothermal field, Iran: Thermomonas hydrothermalis and Bacillus altitudinis isolates as a potential source of thermostable protease. Geomicrobiol J 38(1):87–95. https://doi.org/10.1080/01490451.2020.1812774

    Article  CAS  Google Scholar 

  113. Sun Z, Liu K, Zhang J, Zhang Y, Xu K, Yu D, Wang J, Hu L, Chen L, Li C (2017) IAA producing Bacillus altitudinis alleviates iron stress in Triticum aestivum L. seedling by both bioleaching of iron and up-regulation of genes encoding ferritins. Plant Soil 419(1):1–11. https://doi.org/10.1007/s11104-017-3218-9

    Article  CAS  Google Scholar 

  114. Goswami M, Deka S (2019) Biosurfactant production by a rhizosphere bacteria bacillus altitudinis MS16 and its promising emulsification and antifungal activity. Colloids Surf B 178:285–296. https://doi.org/10.1016/j.colsurfb.2019.03.003

    Article  CAS  Google Scholar 

  115. Babar Z, Khan M, Chotana GA, Murtaza G, Shamim S (2021) Evaluation of the potential role of Bacillus altitudinis MT422188 in nickel bioremediation from contaminated industrial effluents. Sustainability 13(13):7353. https://doi.org/10.3390/su13137353

    Article  CAS  Google Scholar 

  116. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  117. Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1(3):269–285

    CAS  PubMed  Google Scholar 

  118. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Education, Culture, Research and Technology of the Republic of Indonesia for providing the funding for this research through the accelerated master’s program leading to doctorate (PMDSU) research grant number 1471/IT3.11/PN/2018.

Author information

Authors and Affiliations

Authors

Contributions

YAI, IR, SA, GD, and DAS designed the study. YAI carried out the laboratory work, analyzed the data, and wrote the original draft. DAS, GD, SA, and IR supervised the study and revised the final version of the document. YAI created the manuscript’s illustration and edited the final version. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Dwi Andreas Santosa.

Ethics declarations

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this article. The authors confirmed that the data and the paper are free of plagiarism.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indriyani, Y.A., Rusmana, I., Anwar, S. et al. Bioelectrochemical assessment of a novel electrogenic Bacillus altitudinis AC11.2 for electricity generation in microbial fuel cell (MFC) system. J Appl Electrochem 54, 977–997 (2024). https://doi.org/10.1007/s10800-023-02020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02020-9

Keywords

Navigation