Skip to main content
Log in

Synergistic design of Mo-intercalated NiSe2: a binary transition metal chalcogenide for highly efficient bifunctional seawater electrolysis

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Developing highly efficient and low-cost catalysts for water-splitting is crucial for long-term energy conversion. Herein, we synthesized the Mo-intercalated NiSe2 –ternary NiMoSe2 through a simple solvo/hydrothermal route. The synthesized materials were characterized structurally and morphologically using XRD, XPS, FESEM, TEM, and SAED. The designed electrocatalyst has outstanding catalytic capabilities for hydrogen and oxygen evolution reactions in alkaline conditions, with an ultra-small Tafel slope value of 53 mV dec−1 for hydrogen evolution and 63 mV dec−1 for oxygen evolution. The excellent bifunctional catalytic performance of ternary NiMoSe2 should be due to the electronic modulation and synergistic impact between Ni and Mo, the intrinsic metallic conductivity, and the increased active site exposure. It is shown that the ternary NiMoSe2 is an excellent bifunctional electrocatalyst for seawater splitting, producing a current density of 10 mA cm−2 at overpotentials of 105 and 285 mV for OER and HER in alkaline seawater, respectively, following the Heyrovsky mechanism with outstanding long-term stability. This finding offers a new approach towards the construction of efficient catalysts for hydrogen generation from seawater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ji J, Li Y, Peng W et al (2015) Advanced Graphene-based Binder-Free electrodes for High-Performance Energy Storage. Adv Mater 27:5264–5279. https://doi.org/10.1002/adma.201501115

    Article  CAS  PubMed  Google Scholar 

  2. Nallal M, Park KH, Park S et al (2022) Cu2O/reduced graphene oxide nanocomposites for electrocatalytic overall water splitting. ACS Appl Nano Mater 5:17271–17280. https://doi.org/10.1021/acsanm.2c04491

    Article  CAS  Google Scholar 

  3. Madhu R, Jayan R, Karmakar A et al (2022) Rationally constructing chalcogenide–hydroxide heterostructures with amendment of electronic structure for overall water-splitting reaction. ACS Sustain Chem Eng 10:11299–11309. https://doi.org/10.1021/acssuschemeng.2c03292

    Article  CAS  Google Scholar 

  4. Gao Y, He W, Cao D et al (2023) Mo-Doped Ni3S2 nanosheet arrays for overall water splitting. ACS Appl Nano Mater 6:6066–6075. https://doi.org/10.1021/acsanm.3c00398

    Article  CAS  Google Scholar 

  5. Wang Z, Zhou T, Chen Z et al (2023) Three-dimensional strawlike MoSe2-Ni(Fe)Se electrocatalysts for overall water splitting. Inorg Chem 62:2894–2904. https://doi.org/10.1021/acs.inorgchem.2c04354

    Article  CAS  PubMed  Google Scholar 

  6. Velpandian M, Ragunathan A, Ummethala G et al (2023) Low-potential overall water splitting induced by engineered CoTe2–WTe2 heterointerfaces. ACS Appl Energy Mater 6:5968–5978. https://doi.org/10.1021/acsaem.3c00412

    Article  CAS  Google Scholar 

  7. Cai J, Cao A, Wang Z et al (2021) Surface oxygen vacancies promoted Pt redispersion to single-atoms for enhanced photocatalytic hydrogen evolution. J Mater Chem A 9:13890–13897. https://doi.org/10.1039/D1TA01400E

    Article  CAS  Google Scholar 

  8. Xia BY, Wu HB, Li N et al (2015) One-Pot synthesis of Pt-Co Alloy Nanowire Assemblies with tunable composition and enhanced Electrocatalytic Properties. Angew Chem Int Ed 54:3797–3801. https://doi.org/10.1002/anie.201411544

    Article  CAS  Google Scholar 

  9. Lai J, Lin F, Tang Y et al (2019) Efficient Bifunctional Polyalcohol Oxidation and Oxygen Reduction Electrocatalysts enabled by ultrathin PtPdM (M = ni, Fe, Co) Nanosheets. Adv Energy Mater 9:1800684. https://doi.org/10.1002/aenm.201800684

    Article  CAS  Google Scholar 

  10. Zhang M, Chen J, Li H et al (2019) Ru-RuO2/CNT hybrids as high-activity pH-universal electrocatalysts for water splitting within 0.73 V in an asymmetric-electrolyte electrolyzer. Nano Energy 61:576–583. https://doi.org/10.1016/j.nanoen.2019.04.050

    Article  CAS  Google Scholar 

  11. Li L, Wang X, Guo Y, Li J (2020) Synthesis of an Ultrafine CoP Nanocrystal/Graphene sandwiched structure for efficient overall water splitting. Langmuir 36:1916–1922. https://doi.org/10.1021/acs.langmuir.9b03810

    Article  CAS  PubMed  Google Scholar 

  12. Guo F, Li W, Liu Y et al (2023) Heterogeneous Fe-Doped NiCoP–MoO3 efficient electrocatalysts for overall water splitting. Langmuir 39:1042–1050. https://doi.org/10.1021/acs.langmuir.2c02678

    Article  CAS  Google Scholar 

  13. Giuffredi G, Asset T, Liu Y et al (2021) Transition metal chalcogenides as a versatile and tunable platform for catalytic CO2 and N2 electroreduction. ACS Mater Au 1:6–36. https://doi.org/10.1021/acsmaterialsau.1c00006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anantharaj S, Ede SR, Sakthikumar K et al (2016) Recent trends and perspectives in Electrochemical Water splitting with an emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: a review. ACS Catal 6:8069–8097. https://doi.org/10.1021/acscatal.6b02479

    Article  CAS  Google Scholar 

  15. Liu Y, Guo Y, Liu Y et al (2023) A Mini Review on Transition Metal Chalcogenides for Electrocatalytic Water Splitting: bridging Material Design and practical application. Energy Fuels 37:2608–2630. https://doi.org/10.1021/acs.energyfuels.2c03833

    Article  CAS  Google Scholar 

  16. Jiang B, Liu Y, Zhang J et al (2022) Synthesis of bimetallic nickel cobalt selenide particles for high-performance hybrid supercapacitors. RSC Adv 12:1471–1478. https://doi.org/10.1039/D1RA08678B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen C, Deng H, Wang C et al (2021) Petal-like CoMoO4 clusters grown on carbon cloth as a binder-free electrode for supercapacitor application. ACS Omega 6:19616–19622. https://doi.org/10.1021/acsomega.1c02166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peng X, Yan Y, Jin X et al (2020) Recent advance and prospectives of electrocatalysts based on transition metal selenides for efficient water splitting. Nano Energy 78:105234. https://doi.org/10.1016/j.nanoen.2020.105234

    Article  CAS  Google Scholar 

  19. Ahmed M, Lakhan MN, Shar AH et al (2022) Electrochemical performance of grown layer of Ni(OH)2 on nickel foam and treatment with phosphide and selenide for efficient water splitting. J Indian Chem Soc 99:100281. https://doi.org/10.1016/j.jics.2021.100281

    Article  CAS  Google Scholar 

  20. Hanan A, Solangi MY, Laghari AJ et al (2022) PdO@CoSe2 composites: efficient electrocatalysts for water oxidation in alkaline media. RSC Adv 13:743–755. https://doi.org/10.1039/D2RA07340D

    Article  PubMed  Google Scholar 

  21. Qureshi RA, Hanan A, Abro MI et al (2023) Facile eggplant assisted mixed metal oxide nanostructures: a promising electrocatalyst for water oxidation in alkaline media. Mater Today Sustain 23:100446. https://doi.org/10.1016/j.mtsust.2023.100446

    Article  Google Scholar 

  22. Solangi MY, Aftab U, Tahira A et al (2023) In-situ growth of nonstoichiometric CrO0.87 and Co3O4 hybrid system for the enhanced electrocatalytic water splitting in alkaline media. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2023.06.059

    Article  Google Scholar 

  23. Hanan A, Lakhan MN, Shu D et al (2023) An efficient and durable bifunctional electrocatalyst based on PdO and Co2FeO4 for HER and OER. Int J Hydrog Energy 48:19494–19508. https://doi.org/10.1016/j.ijhydene.2023.02.049

    Article  CAS  Google Scholar 

  24. Wang Y, Liu R, Sun S, Wu X (2019) Facile synthesis of nickel-cobalt selenide nanoparticles as battery-type electrode for all-solid-state asymmetric supercapacitors. J Colloid Interface Sci 549:16–21. https://doi.org/10.1016/j.jcis.2019.04.049

    Article  CAS  PubMed  Google Scholar 

  25. Patil K, Babar P, Li X et al (2022) Facile electrodeposited NiMoSe nanospheres for hydrogen evolution reaction. Mater Lett 310:131409. https://doi.org/10.1016/j.matlet.2021.131409

    Article  CAS  Google Scholar 

  26. Wang H, Jiao X, Zeng W et al (2021) Electrodeposition NiMoSe ternary nanoshperes on nickel foam as bifunctional electrocatalyst for urea electrolysis and hydrogen evolution reaction. Int J Hydrog Energy 46:37792–37801. https://doi.org/10.1016/j.ijhydene.2021.09.050

    Article  CAS  Google Scholar 

  27. Francis MK, Bhargav RM, Ahmed PB (2023) Co0.75Mo3S3.75/CoS2@2D-MoS2 nanosheets on carbon cloth: a progressive binder-free electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.12.234

    Article  Google Scholar 

  28. Kandel MR, Pan UN, Paudel DR et al (2022) Hybridized bimetallic phosphides of Ni–Mo, Co–Mo, and Co–Ni in a single ultrathin-3D-nanosheets for efficient HER and OER in alkaline media. Compos Part B 239:109992. https://doi.org/10.1016/j.compositesb.2022.109992

    Article  CAS  Google Scholar 

  29. Sakthivel M, Ramaraj S, Chen S-M et al (2019) Transition-metal-doped Molybdenum diselenides with defects and abundant active sites for efficient performances of Enzymatic Biofuel Cell and Supercapacitor Applications. ACS Appl Mater Interfaces 11:18483–18493. https://doi.org/10.1021/acsami.9b04884

    Article  CAS  PubMed  Google Scholar 

  30. Shakeel N, Ahamed MI, Inamuddin et al (2021) Hydrothermally synthesized defective NiMoSe2 nanoplates decorated on the surface of functionalized SWCNTs doped polypyrrole scaffold for enzymatic biofuel cell applications. Int J Hydrog Energy 46:3240–3250. https://doi.org/10.1016/j.ijhydene.2020.04.144

    Article  CAS  Google Scholar 

  31. Vidhya MS, Yuvakkumar R, Ravi G et al (2021) Asymmetric polyhedron structured NiSe2@MoSe2 device for use as a supercapacitor. Nanoscale Adv 3:4207–4215. https://doi.org/10.1039/D0NA01047B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khan BA, Hussain R, Shah A et al (2022) NiSe2 nanocrystals intercalated rGO sheets as a high-performance asymmetric supercapacitor electrode. Ceram Int 48:5509–5517. https://doi.org/10.1016/j.ceramint.2021.11.095

    Article  CAS  Google Scholar 

  33. Zhang J, Kang W, Jiang M et al (2017) Conversion of 1T-MoSe2 to 2H-MoS2xSe2 – 2x mesoporous nanospheres for superior sodium storage performance. Nanoscale 9:1484–1490. https://doi.org/10.1039/C6NR09166K

    Article  CAS  PubMed  Google Scholar 

  34. Zheng L-J, Zhang B-P, Han C-G et al (2016) Mechanical alloying-spark plasma sintering synthesis and thermoelectric properties of n-type NiSe2 + x semiconductors: analysis of intrinsic defects and phase structures. J Mater Sci 27:8363–8369. https://doi.org/10.1007/s10854-016-4847-0

    Article  CAS  Google Scholar 

  35. Kirubasankar B, Vijayan S, Angaiah S (2019) Sonochemical synthesis of a 2D–2D MoSe2/graphene nanohybrid electrode material for asymmetric supercapacitors. Sustain Energy Fuels 3:467–477. https://doi.org/10.1039/C8SE00446C

    Article  CAS  Google Scholar 

  36. Dai T, Sun J, Peng X et al (2022) In situ synthesis of heterogeneous NiSe2/MoSe2 nanocomposite for high-efficiency electrocatalytic hydrogen evolution reaction. Energy Sci Eng 10:4061–4070. https://doi.org/10.1002/ese3.1270

    Article  CAS  Google Scholar 

  37. Sun Y, Xu K, Wei Z et al (2018) Strong electronic interaction in dual-cation‐incorporated NiSe2 nanosheets with lattice distortion for highly efficient overall water splitting. Adv Mater 30:1802121. https://doi.org/10.1002/adma.201802121

    Article  CAS  Google Scholar 

  38. Zheng X, Han X, Liu H et al (2018) Controllable synthesis of NixSe (0.5 ≤ x ≤ 1) nanocrystals for efficient rechargeable zinc–air batteries and water splitting. ACS Appl Mater Interfaces 10:13675–13684. https://doi.org/10.1021/acsami.8b01651

    Article  CAS  PubMed  Google Scholar 

  39. Mahankali K, Gottumukkala SV, Masurkar N et al (2022) Unveiling the electrocatalytic activity of 1T′-MoSe2 on lithium–polysulfide conversion reactions. ACS Appl Mater Interfaces 14:24486–24496. https://doi.org/10.1021/acsami.2c05508

    Article  CAS  PubMed  Google Scholar 

  40. Peng H, Wei C, Wang K et al (2017) Ni0.85Se@MoSe2 Nanosheet Arrays as the Electrode for High-Performance Supercapacitors. ACS Appl Mater Interfaces 9:17067–17075. https://doi.org/10.1021/acsami.7b02776

    Article  CAS  PubMed  Google Scholar 

  41. Solangi AG, Tahira A, Chang AS et al (2023) Enhanced electro active properties of NiCo2O4 nanostructures using garlic extract for the sensitive and selective enzyme-free detection of ascorbic acid. J Mater Sci 34:1549. https://doi.org/10.1007/s10854-023-10937-2

    Article  CAS  Google Scholar 

  42. Ibupoto ZH, Tahira A, Shah AA et al (2022) NiCo2O4 nanostructures loaded onto pencil graphite rod: an advanced composite material for oxygen evolution reaction. Int J Hydrog Energy 47:6650–6665. https://doi.org/10.1016/j.ijhydene.2021.12.024

    Article  CAS  Google Scholar 

  43. Li Y, Zhao Y, Li F-M et al (2021) Ultrathin NiSe nanosheets on Ni Foam for efficient and durable hydrazine-assisted electrolytic hydrogen production. ACS Appl Mater Interfaces 13:34457–34467. https://doi.org/10.1021/acsami.1c09503

    Article  CAS  PubMed  Google Scholar 

  44. Inta HR, Ghosh S, Mondal A et al (2021) Ni0.85Se/MoSe2 Interfacial structure: an efficient electrocatalyst for alkaline hydrogen evolution reaction. ACS Appl Energy Mater 4:2828–2837. https://doi.org/10.1021/acsaem.1c00125

    Article  CAS  Google Scholar 

  45. Premnath K, Arunachalam P, Amer MS et al (2019) Hydrothermally synthesized nickel molybdenum selenide composites as cost-effective and efficient trifunctional electrocatalysts for water splitting reactions. Int J Hydrog Energy 44:22796–22805. https://doi.org/10.1016/j.ijhydene.2019.07.034

    Article  CAS  Google Scholar 

  46. Feng W, Bu M, Kan S et al (2021) Interfacial hetero-phase construction in nickel/molybdenum selenide hybrids to promote the water splitting performance. Appl Mater Today 25:101175. https://doi.org/10.1016/j.apmt.2021.101175

    Article  Google Scholar 

  47. Zuo X, Chang K, Zhao J et al (2016) Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material. J Mater Chem A 4:51–58. https://doi.org/10.1039/C5TA06869J

    Article  CAS  Google Scholar 

  48. Li L, Sun H, Xu X et al (2022) Engineering amorphous/crystalline rod-like core–shell electrocatalysts for overall water splitting. ACS Appl Mater Interfaces 14:50783–50793. https://doi.org/10.1021/acsami.2c13417

    Article  CAS  PubMed  Google Scholar 

  49. Upadhyay S, Pandey OP (2022) Effect of Se content on the oxygen evolution reaction activity and capacitive performance of MoSe2 nanoflakes. Electrochim Acta 412:140109. https://doi.org/10.1016/j.electacta.2022.140109

    Article  CAS  Google Scholar 

  50. Zong H, Yu K, Zhu Z (2020) Heterostructure nanohybrids of Ni-doped MoSe2 coupled with Ti2NTx toward efficient overall water splitting. Electrochim Acta 353:136598. https://doi.org/10.1016/j.electacta.2020.136598

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Sri Sivasubramaniya Nadar, College of Engineering, Tamilnadu, India.

Author information

Authors and Affiliations

Authors

Contributions

JJJJK and LDST: Methodology, Data curation, Validation, and Writing—Original Draft. MSP and RP: Formal Analysis, Supervision, Writing—Review and Editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jeffrey Joseph John Jeya Kamaraj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John Jeya Kamaraj, J.J., Stephen Tamil, L.D., Muthu, S.P. et al. Synergistic design of Mo-intercalated NiSe2: a binary transition metal chalcogenide for highly efficient bifunctional seawater electrolysis. J Appl Electrochem 54, 999–1012 (2024). https://doi.org/10.1007/s10800-023-02016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02016-5

Keywords

Navigation