Skip to main content
Log in

Improving the efficiency of ZnTe based heterojunction solar cell with In2Te3 BSF layer

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Zinc telluride (ZnTe) is considered as a favorable photovoltaic (PV) material for its desirable absorption coefficient, improved conversion efficiency, and consequently inexpensive production material requirements. The principal objective of this research is to improve the performance of newly designed Al/ZnO/CdS/ZnTe/In2Te3/Pt solar cell and to investigate the influence of the Indium telluride (In2Te3) back surface field (BSF) layer on the performance parameters of open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power conversion efficiency (PCE). This simulation analyses the performance of the baseline structure Al/ZnO/CdS/ZnTe/Pt which is considered as without BSF and the proposed structure Al/ZnO/CdS/ZnTe/In2Te3/Pt with BSF. The thicknesses and doping density have been used are 30, 30, 500, and 100 nm and 1019, 1018, 1019, and 1021 cm−3 for ZnO, CdS, ZnTe, and In2Te3 layer, respectively, with bulk defect density of 1014 cm−3 for each layer of the proposed cell. The PCE has been achieved 18.40 and 20.20% with VOC of 1.860 and 2.008 V, JSC of 10.79 and 10.99 mA cm−2, as well as FF of 91.87 and 91.92% for the baseline and proposed solar cell, correspondingly. The present study provides the guidelines for the realization of high efficiency and thin ZnTe-based solar cell in cost-effective way.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be available on request to the corresponding author.

Abbreviations

ZnTe:

Zinc telluride

BSF:

Back surface field

ZnO:

Zinc oxide

VOC :

Open circuit voltage

FF:

Fill factor

SRV:

Surface recombination velocity

Si:

Silicon

CIGS:

Copper indium gallium selenide

DS:

Dye-sensitized

a-Si:

Amorphous silicon

LED:

Light emitting diode

PEDOT:PSS:

Poly (3,4ethylenedioxythiophene) polystyrene sulfonate

Cu2O:

Copper (I) oxide

PGEs:

Photo generated electrons

Eg (eV):

Band gap

NC  (cm 3):

CB effective density of states

εr :

Dielectric permittivity (relative)

TVh (cm s 1):

Hole thermal velocity

µh (cm2  V 1 s 1):

Hole mobility

N (cm 3):

Shallow uniform acceptor density

Se (cm s 1):

Surface recombination velocity of electrons

Φ (eV):

Work function of the metal contact

R (Ω cm2):

Series resistance

In2Te3 :

Indium telluride

PV:

Photovoltaic

CdS:

Cadmium sulfide

JSC :

Short circuit current

PCE:

Power conversion efficiency

SC:

Solar cell

CdTe:

Cadmium telluride

CZTS:

Copper zinc tin sulfide

QD:

Quantum dot

TFSC:

Thin film solar cell

CuSCN:

Copper (I) thiocyanate

Sb2S3 :

Antimony trisulfide

NiOx :

Nickel oxide

EQE:

External quantum efficiency

χ (eV):

Electron affinity

NV  (cm 3):

VB effective density of states

TVe (cm s 1):

Electron thermal velocity

µe (cm2  V 1 s 1):

Electron mobility

ND  (cm 3):

Shallow uniform donor density

Er (eV):

Energy level with respect to reference

Sh (cm s 1):

Surface recombination velocity of holes

Rf (%):

Refelctivity

Rsh  (Ω cm2):

Shunt resistance

References

  1. Ramanujam J, Verma A, González-díaz B et al (2016) Progress in Materials Science Inorganic photovoltaics – planar and nanostructured devices. Prog Mater Sci 82:294–404. https://doi.org/10.1016/j.pmatsci.2016.03.005

    Article  CAS  Google Scholar 

  2. Green MA (2019) How Did Solar Cells Get So Cheap ? Joule 3:631–633. https://doi.org/10.1016/j.joule.2019.02.010

    Article  Google Scholar 

  3. Bošnjaković M, Santa R, Crnac Z, Bošnjaković T (2023) Environmental Impact of PV power systems. Sustainability (Switzerland) 15:1–26. https://doi.org/10.3390/su151511888

    Article  CAS  Google Scholar 

  4. Zhang H, Yu Z, Zhu C, Yang R, Yan B, Jiang G (2023) Green or not? Environmental challenges from photovoltaic technology. Environ Pollut. https://doi.org/10.1016/j.envpol.2023.121066

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ganose AM, Savory N, Scanlon DO (2017) Beyond methylammonium lead iodide : prospects for the emergent field of n s 2 containing solar absorbers. Chem Commun. https://doi.org/10.1039/c6cc06475b

    Article  Google Scholar 

  6. Tyagi VV, Rahim NAA, Rahim NA, Selvaraj JAL (2013) Progress in solar PV technology: research and achievement. Renew Sustain Energy Rev 20:443–461. https://doi.org/10.1016/j.rser.2012.09.028

    Article  CAS  Google Scholar 

  7. Hosenuzzaman M, Rahim NA, Selvaraj J, Hasanuzzaman M (2015) Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew Sustain Energy Rev 41:284–297. https://doi.org/10.1016/j.rser.2014.08.046

    Article  Google Scholar 

  8. Lee TD, Ebong AU (2017) A review of thin film solar cell technologies and challenges. Renew Sustain Energy Rev 70:1286–1297. https://doi.org/10.1016/j.rser.2016.12.028

    Article  CAS  Google Scholar 

  9. Almora O, Baran D, Bazan GC et al (2023) Device performance of emerging photovoltaic materials ( Version 3). Adv Energy Mater. https://doi.org/10.1002/aenm.202203313

    Article  Google Scholar 

  10. Katagiri H, Jimbo K, Maw WS et al (2009) Development of CZTS-based thin fi lm solar cells. Thin Solid Films 517:2455–2460. https://doi.org/10.1016/j.tsf.2008.11.002

    Article  CAS  Google Scholar 

  11. Atowar Rahman M (2021) Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL. Sol Energy 215:64–76. https://doi.org/10.1016/j.solener.2020.12.020

    Article  CAS  Google Scholar 

  12. Zakutayev A (2017) ScienceDirect Brief review of emerging photovoltaic absorbers. Current Opinion Green Sustain Chem 4:8–15. https://doi.org/10.1016/j.cogsc.2017.01.002

    Article  Google Scholar 

  13. Almaiyaly BH, Hussein BH, Shaban AH (2018) Fabrication and characterization study of ZnTe/n-Si heterojunction solar cell application. In: Journal of Physics: Conference Series. 1003-012084. https://doi.org/10.1088/1742-6596/1003/1/012084.

  14. Hossain MI, Kamruzzaman M, Obaidul Islam ABM (2015) Effects of temperature in electrodeposition of ZnTe thin films. J Mater Sci: Mater Electron 26:1756–1762. https://doi.org/10.1007/s10854-014-2604-9

    Article  CAS  Google Scholar 

  15. Ullah H, Soucase BM, Skhouni O, El Manouni A (2014) A numerical simulation study of ZnTe-based solar cells. Proceedings of 2014 International Renewable and Sustainable Energy Conference, IRSEC 2014 686–690. https://doi.org/10.1109/IRSEC.2014.7059791

  16. Green MA, Yoshita M, Rauer M et al (2022) Solar cell efficiency tables ( Version 60). Progress in Photovoltaics. https://doi.org/10.1002/pip.3595

    Article  Google Scholar 

  17. Ibrahim A, Memon UB, Roy S, et al (2015) Fabrication and characterization of CdS/CdTe heterojunction thin film solar cell. In: IET Conference Publications. 471–473. https://doi.org/10.1049/cp.2015.1678.

  18. Kabalan A, Sohid SB (2020) Optical and electrical analysis of core-shell ZnO/ZnTe micropillar solar cells. IEEE J Electron Dev Soc 8:701–710. https://doi.org/10.1109/JEDS.2020.3007810

    Article  CAS  Google Scholar 

  19. Kwok K. NG (2002) Complete Guide to Semiconductor Devices, Second Edi. John Wiley & Sons, Inc, 2002. Print ISBN:9780471202400, Online ISBN:9781118014769, https://doi.org/10.1002/9781118014769

  20. Pawlikowski JM (1985) Preparation and characterization of close-spaced vapour transport thin films of ZnSe for heterojunction solar cells. Thin Solid Films 127:9–28. https://doi.org/10.1016/0040-6090(85)90209-3

    Article  CAS  Google Scholar 

  21. Tang J, Mao D, Feng L et al (1996) Properties and optimization of ZnTe: Cu back contacts on CdTe/CdS thin film solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference. https://doi.org/10.1109/pvsc.1996.564280

    Article  Google Scholar 

  22. Kumari K, Jana A, Dey A et al (2021) Lead free CH3NH3SnI3 based perovskite solar cell using ZnTe nano flowers as hole transport layer. Opt Mater 111:110574. https://doi.org/10.1016/j.optmat.2020.110574

    Article  CAS  Google Scholar 

  23. Pistone A, Arico AS, Antonucci PL et al (1998) Preparation and characterization of thin film ZnCuTe semiconductors. Sol Energy Mater Sol Cells 53:255–267. https://doi.org/10.1016/S0927-0248(98)00013-0

    Article  CAS  Google Scholar 

  24. Suthar D, Himanshu PSL et al (2020) Enhanced physicochemical properties of ZnTe thin films as potential buffer layer in solar cell applications. Solid State Sci 107:106346. https://doi.org/10.1016/j.solidstatesciences.2020.106346

    Article  CAS  Google Scholar 

  25. Shalaan E, Ibrahim E, Al-Marzouki F, Al-Dossari M (2020) Observation of mixed types of energy gaps in some II–VI semiconductors nanostructured films: towards enhanced solar cell performance. Appl Phys A: Mater Sci Process. https://doi.org/10.1007/s00339-020-04045-9

    Article  Google Scholar 

  26. Fauzi F, Diso DG, Echendu OK et al (2013) Development of ZnTe layers using an electrochemical technique for applications in thin-film solar cells. Semiconductor Sci Technol. https://doi.org/10.1088/0268-1242/28/4/045005

    Article  Google Scholar 

  27. Hamdi H, Valette S (1980) ZnTe extrinsic photodetector for visible integrated optics. J Appl Phys 51:4739–4741. https://doi.org/10.1063/1.328303

    Article  CAS  Google Scholar 

  28. Asano H, Tsukuda S, Kita M et al (2018) Colloidal Zn(Te, Se)/ZnS core/shell quantum dots exhibiting narrow-band and green photoluminescence. ACS Omega 3:6703–6709. https://doi.org/10.1021/acsomega.8b00612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yoshino K, Memon A, Yoneta M et al (2002) Optical characterization of the ZnTe pure-green LED. Phys Status Solidi (B) Basic Res 229:977–980

    Article  CAS  Google Scholar 

  30. Tanaka T, Nishio M, Guo Q, Ogawa H (2008) Fabrication of ZnTe light-emitting diode by Al thermal diffusion through surface oxidation layer. Jpn J Appl Phys 47:8408–8410. https://doi.org/10.1143/JJAP.47.8408

    Article  CAS  Google Scholar 

  31. Patel NG, Panchal CJ, Makhija KK et al (1994) Fabrication and characterization of ZnTe/CdSe thin film solar cells. Cryst Res Technol 29:247–252. https://doi.org/10.1002/crat.2170290214

    Article  CAS  Google Scholar 

  32. Chamola P, Mittal P (2020) Impact of ZnTe, SbZnTe and SnZnTe absorber materials for multi-layered solar cell: Parametric extraction and layer wise internal analysis. Optik 224:165626. https://doi.org/10.1016/j.ijleo.2020.165626

    Article  CAS  Google Scholar 

  33. Tanaka T, Miyabara M, Saito K et al (2013) Development of ZnTe-based solar cells. Mater Sci Forum 750:80–83. https://doi.org/10.4028/www.scientific.net/MSF.750.80

    Article  CAS  Google Scholar 

  34. Simmons MY, Al Allak HM, Brinkman AW, Durose K (1992) Electrical and optical characterisation of epitaxial ZnTe/CdTe/CdS and ZnTe/CdTe/GaAs p-i-n solar cell structures grown by metalorginic vapour phase epitaxy. J Cryst Growth 117:959–963. https://doi.org/10.1016/0022-0248(92)90892-M

    Article  CAS  Google Scholar 

  35. Skhouni O, El Manouni A, Mari B, Ullah H (2016) Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance. EPJ Appl Phys 74:1–6. https://doi.org/10.1051/epjap/2015150365

    Article  CAS  Google Scholar 

  36. Ahmed A, Riaz K, Mehmood H et al (2020) Performance optimization of CH3NH3Pb(I1-xBrx)3 based perovskite solar cells by comparing different ETL materials through conduction band offset engineering. Opt Mater 105:109897. https://doi.org/10.1016/j.optmat.2020.109897

    Article  CAS  Google Scholar 

  37. Rashel S, Ahmed A, Sunny A, Rahman S (2021) Solar energy materials and solar cells performance enhancement of Sb 2 Se 3 solar cell using a back surface field layer : a numerical simulation approach. Sol Energy Mater Sol Cells 221:110919. https://doi.org/10.1016/j.solmat.2020.110919

    Article  CAS  Google Scholar 

  38. Haque MD, Ali MH, Islam AZMT (2021) Efficiency enhancement of WSe2 heterojunction solar cell with CuSCN as a hole transport layer: a numerical simulation approach. Sol Energy 230:528–537. https://doi.org/10.1016/j.solener.2021.10.054

    Article  CAS  Google Scholar 

  39. Hasan Ali M, Saiful Islam ATM, Haque MD et al (2023) Numerical analysis of FeSi2 based solar cell with PEDOT:PSS hole transport layer. Mate Today Commun 34:105387. https://doi.org/10.1016/j.mtcomm.2023.105387

    Article  CAS  Google Scholar 

  40. Hossain MK, Mohammed MKA, Pandey R et al (2023) Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr 3 perovskite solar cells. Energy Fuels. https://doi.org/10.1021/acs.energyfuels.3c00035

    Article  Google Scholar 

  41. Rahman S, Rashel S, Ahmed A (2021) Photovoltaic performance enhancement in CdTe thin-film heterojunction solar cell with Sb 2 S 3 as hole transport layer. Sol Energy 230:605–617. https://doi.org/10.1016/j.solener.2021.10.036

    Article  CAS  Google Scholar 

  42. Ahmmed S, Karim A, Rahman H et al (2021) Performance analysis of lead-free CsBi 3 I 10 -based perovskite solar cell through the numerical calculation. Sol Energy 226:54–63. https://doi.org/10.1016/j.solener.2021.07.076

    Article  CAS  Google Scholar 

  43. Ali MH, Al Mamun MA, Haque MD et al (2023) Performance enhancement of an MoS2-based heterojunction solar cell with an in2te3 back surface field: a numerical simulation approach. ACS Omega 8:7017–7029. https://doi.org/10.1021/acsomega.2c07846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Seck SM, Ndiaye EN, Fall M, Charvet S (2020) Study of efficiencies CdTe/CdS photovoltaic solar cell according to electrical properties by scaps simulation. Nat Res 11:147–155. https://doi.org/10.4236/nr.2020.114009

    Article  CAS  Google Scholar 

  45. Moon MMA, Ali MH, Rahman MF et al (2020) Design and simulation of FeSi2-based novel heterojunction solar cells for harnessing visible and near-infrared light. Physica Status Solidi (A) Appl Mat Sci. https://doi.org/10.1002/pssa.201900921

    Article  Google Scholar 

  46. Suemasu T, Usami N (2017) Exploring the potential of semiconducting BaSi2 for thin-film solar cell applications. J Phys D: Appl Phys. https://doi.org/10.1088/1361-6463/50/2/023001

    Article  Google Scholar 

  47. Von Roos O (1978) A simple theory of back surface field (BSF) solar cells. J Appl Phys 49:3503–3511. https://doi.org/10.1063/1.325262

    Article  Google Scholar 

  48. Kumar A, Thakur AD (2018) Improvement of efficiency in CZTSSe solar cell by using back surface field. IOP Conference Series: materials science and engineering. https://doi.org/10.1088/1757-899X/360/1/012027

  49. Moon MMA, Ali MH, Rahman MF et al (2020) Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell. Physica Scripta. https://doi.org/10.1088/1402-4896/ab49e8

    Article  Google Scholar 

  50. Decock K, Niemegeers A, Verschraegen J (2021) SCAPS manual most recent (1).pdf. https://scaps.elis.ugent.be/SCAPS%20manual%20most%20recent.pdf

  51. Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361:527–532. https://doi.org/10.1016/S0040-6090(99)00825-1

    Article  Google Scholar 

  52. Decock K, Khelifi S, Burgelman M (2011) Modelling multivalent defects in thin film solar cells. Thin Solid Films 519:7481–7484. https://doi.org/10.1016/j.tsf.2010.12.039

    Article  CAS  Google Scholar 

  53. Burgelman M, Marlein J (2008) Analysis of graded band gap solar cells with SCAPS. In: the 23rd European Photovoltaic Solar. pp 2151–2155. http://medcontent.metapress.com/index/A65RM03P4874243N.pdf%5Cn

  54. Verschraegen J, Burgelman M (2007) Numerical modeling of intra-band tunneling for heterojunction solar cells in scaps. Thin Solid Films 515:6276–6279. https://doi.org/10.1016/j.tsf.2006.12.049

    Article  CAS  Google Scholar 

  55. Degrave, S, Burgelman, M, Nollet, P (2003) Modelling of polycrystalline thin film solar cells: New features in scaps version 2.3, in: Proc. 3rd World Conf. Photovolt. Energy Convers. 487–490. https://doi.org/10.1109/WCPEC.2003.1305327.

  56. Niemegeers A, Burgelman M (1996) MODELLING OF ac-CHARACTERISTICS SOLAR CELLS. IEEE Photovoltaics Specialists Conference 901–904. IEEE, New-York, 1996.

  57. Bayad H, El Manouni A, Marí B et al (2018) Influence of P+-ZnTe back surface contact on photovoltaic performance of ZnTe based solar cells. Opt Quantum Electron. https://doi.org/10.1007/s11082-018-1530-0

    Article  Google Scholar 

  58. Dey M, Dey M, Matin MA, Amin N (2016) High performance and stable molybdenum telluride PV cells with Indium Telluride BSF. ICDRET 2016 - 4th International Conference on the Developments in Renewable Energy Technology 4–7. https://doi.org/10.1109/ICDRET.2016.7421495

  59. Chowdhury MS, Shahahmadi SA, Chelvanathan P et al (2020) Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results Phys 16:102839. https://doi.org/10.1016/j.rinp.2019.102839

    Article  Google Scholar 

  60. Matin MA, Dey M (2014) High performance ultra-thin CdTe solar cell with Lead Telluride BSF. 2014 International Conference on Informatics, Electronics and Vision, ICIEV 2014 0–4. https://doi.org/10.1109/ICIEV.2014.6850826

  61. Bissels GMMW, Schermer JJ, Asselbergs MAH et al (2014) Theoretical review of series resistance determination methods for solar cells. Sol Energy Mater Sol Cells 130:605–614. https://doi.org/10.1016/j.solmat.2014.08.003

    Article  CAS  Google Scholar 

  62. Bag A, Radhakrishnan R, Nekovei R, Jeyakumar R (2020) Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Sol Energy 196:177–182. https://doi.org/10.1016/j.solener.2019.12.014

    Article  CAS  Google Scholar 

  63. Ahmmed S, Aktar A, Tabassum S et al (2021) CuO based solar cell with V2O5 BSF layer: theoretical validation of experimental data. Superlattices Microstruct 151:106830. https://doi.org/10.1016/j.spmi.2021.106830

    Article  CAS  Google Scholar 

  64. Husna J, Sibuea SR, Sulaiman OK, et al (2020) The Prospects Of Zinc Oxide (ZnO) For Window Layer Cigs Solar Cells. 730–738. https://doi.org/10.15405/epsbs.2020.03.03.85

  65. Xiao Y, Wang H, Kuang H (2020) Numerical simulation and performance optimization of Sb2S3 solar cell with a hole transport layer. Opt Mater 108:110414. https://doi.org/10.1016/j.optmat.2020.110414

    Article  CAS  Google Scholar 

  66. Sunny A, Rashel S, Ahmed A (2021) Numerical simulation and performance evaluation of highly Ef fi cient Sb 2 Se 3 solar cell with Tin Sul fi de as hole transport layer. Phys Status Solidi (b). https://doi.org/10.1002/pssb.202000630

    Article  Google Scholar 

  67. Haque D, Ali H, Rahman F et al (2022) Numerical analysis for the efficiency enhancement of MoS 2 solar cell : a simulation approach by SCAP-1D. Opt Mater 131:112678. https://doi.org/10.1016/j.optmat.2022.112678

    Article  CAS  Google Scholar 

  68. Rahman MA (2021) Design and simulation of a high-performance Cd-free Cu2SnSe3 solar cells with SnS electron-blocking hole transport layer and TiO2 electron transport layer by SCAPS-1D. SN Appl Sci. https://doi.org/10.1007/s42452-021-04267-3

    Article  Google Scholar 

  69. Royanian S, Ziabari AA, Yousefi R, Ghoreishi SS (2020) Performance Improvement of Ultrathin CIGS Solar Cells Using Al Plasmonic Nanoparticles: The Effect of the Position of Nanoparticles. Islamic Azad University Journal of Optoelectronical Nanostructures Autumn 5:

  70. Khatun MM, Sunny A, Al ASR (2021) Numerical investigation on performance improvement of WS2 thin-film solar cell with copper iodide as hole transport layer. Sol Energy 224:956–965. https://doi.org/10.1016/j.solener.2021.06.062

    Article  CAS  Google Scholar 

  71. Heriche H, Rouabah Z, Bouarissa N (2017) New ultra thin CIGS structure solar cells using SCAPS simulation program. Int J Hydrogen Energy 42:9524–9532. https://doi.org/10.1016/j.ijhydene.2017.02.099

    Article  CAS  Google Scholar 

  72. Maqsood A, Li Y, Meng J et al (2020) Perovskite solar cells based on compact, smooth FA01MA09PbI3 film with efficiency exceeding 22%. Nanoscale Res Lett. https://doi.org/10.1186/s11671-020-03313-0

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sarker S, Ahammad AJS, Seo HW, Kim DM (2014) Electrochemical impedance spectra of dye-sensitized solar cells : fundamentals and spreadsheet calculation. Int J Photoenerg. https://doi.org/10.1155/2014/851705

    Article  Google Scholar 

  74. Abdulrahim SM, Ahmad Z, Bahadra J, Al-thani NJ (2020) Electrochemical impedance spectroscopy analysis of hole transporting material free mesoporous and planar perovskite solar cells. Nanomaterials 10:1635. https://doi.org/10.3390/nano10091635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cao Y, Zhu X, Chen H et al (2019) Towards high efficiency inverted Sb2Se3 thin film solar cells. Solar Energy Mater Solar Cells. https://doi.org/10.1016/j.solmat.2019.109945

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Dr. Marc Burgelman and his colleagues at the EIS Department at the University of Gent in Belgium for providing us with the opportunity to conduct research using the SCAPS-1D software.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MHA: conceived, designed, performed the simulation process, analyzed and interpreted the data, prepared all figures, wrote and reviewed the manuscript. MDH: conceived, designed, wrote and reviewed the manuscript. MMH: conceived, designed and reviewed the manuscript. AZMTI: conceived, designed and reviewed the manuscript.

Corresponding authors

Correspondence to Md. Hasan Ali or Md. Mahabub Hossain.

Ethics declarations

Conflict of interest

We all the authors confirm that there is no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors are agreed to publish this manuscript in this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.H., Haque, M.D., Hossain, M.M. et al. Improving the efficiency of ZnTe based heterojunction solar cell with In2Te3 BSF layer. J Appl Electrochem 54, 1013–1031 (2024). https://doi.org/10.1007/s10800-023-02013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02013-8

Keywords

Navigation